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Preface

The June 14-19, 1993, conference on Groups of Lie Type and their Ge-
ometries took place in Como, Italy, at the lovely 18th century Villa Olmo on
the scenic shore of Lake Como. It brought together experts and interested
mathematicians from numerous countries. The scientific program centered
around invited expository lectures; there also were short research announce-
ments, including talks by younger researchers.

The conference focused on both the structure theory and the geometry of
groups of Lie type, with emphasis on recent results and open problems. Spe-
cial attention was drawn not only to the interplay between group-theoretic
methods and geometric and combinatorial aspects of groups of Lie type,
but also to important and occasionally unexpected connections with other
branches of mathematics.

Expanded versions of most of the talks appear in these Proceedings. This
volume is intended to provide a stimulating collection of themes for a broad
range of algebraists and geometers. Among those themes, represented within
the conference or these Proceedings, are the following: (1) Subgroups of finite
and algebraic groups, (2) Buildings and other geometries associated to groups
of Lie type or Coxeter groups, (3) Generation, and (4) Applications.

We are grateful to the authors for their efforts in providing us with
manuscripts in TgX. Roger Astley, Mathematics Editor of Cambridge Univer-
sity Press, has been very helpful and supportive throughout the prepration
of this volume.

The organizing committee consisted of L. Di Martino (Milan), W. M. Kan-
tor (Eugene), O. H. Kegel (Freiburg), and L. A. Rosati (Florence). The
Center of Scientific Culture ‘A.Volta’ provided valuable assistance with the
local organization. We thank the University of Milan, the Italian Ministry
for University and Scientific Research, and the Italian National Research
Council (C.N.R.), for their financial support of the conference.






ZwHE>Q o 2=

HQHEZ =X

GROUPS OF LIE TYPE
AND THEIR GEOMETRIES

Villa Olmo, 14 to 19 June 1993

Talks

. Aschbacher, Representations of groups on finite simplicial complezes
. Aschbacher, Simple connectivity of p-group complezes

. Borovik, Combinatorics of flag varieties

. Buekenhout, On the dialectic of groups and incidence geometry

. Cartwright, Groups acting simply transitively on the vertices of a building

of type A,

. Casolo, Wielandt’s complezes in finite groups

. Cohen, Metric geometry for Cozeter groups

. Cuypers, Ertended generalized hezagons

. Ford, On disconnected linear groups and restrictions of representations

. Gordeev, Products of conjugacy clusses in algebraic groups and generators

of dense subgroups

. Guralnick, Permutation polynomials and properties of Chevalley groups
. Lawther, Double cosets and CLEFS

. Liebeck, Subgroups of exceptional groups. I

. Van Maldeghem, Ree octagons

. Malle, Cyclotomic Hecke algebras

. Meixner, Geometries that are extensions of buildings

A

Pasini, The direct sum problem for chamber complezes

J. Saxl, Some subgroups, and applications

G.
E.
D.

Seitz, Subgroups of exceptional groups. II
Shult, Hyperplanes and embedded geometries of Lie type

Testerman, Large rank subgroups of simple groups of Lie type

J. Tits, Bad unipotent elements, buildings and the geometry of exceptional

N.
T.

groups two talks
Vavilov, Intermediate subgroups of Chevalley groups
Weigel, A class of Frattini eztensions of finite Chevalley groups

J. Wilson, Economical generating sets for classical groups






List of participants

M. Abramson (Chicago, IL, USA)
S. Adami (Milano, Italy)

M. Aschbacher (Pasadena, CA, USA)
Bader (Roma, Italy)
. Bartolone (Palermo, Italy)
. Bennett (Columbus, OH, USA)
. Bianchi (Milano, Italy)

van Bon (Medford, MA, USA)
. Bonzini (Milano, Italy)
. Borovik (Manchester, UK)
Buekenhout (Bruxelles, Belgium)
. Cartwright (Sydney, Australia)
. Casolo (Udine, Italy)

M. Cazzola (Coventry, UK)
Y. Chen (Torino, Italy)

A. Cohen (Eindhoven, The Netherlands)
B. Cooperstein (Santa Cruz, CA, USA)
M. Costantini (Padova, Italy)
. Curtis (Birmingham, UK)
. Cuypers (Eindhoven, The Netherlands)
D’Agostini (Bologna, Italy)
Dalla Volta (Milano, Italy)
. D’Aniello (Napoli, Italy)
. D’Este (Milano, Italy)

Di Martino (Milano, Italy)

Doyen (Bruxelles, Belgium)

Ellers (Toronto, Canada)
. Enea (Erlangen, Germany)
. Fiorini (Frascati, Italy)

Ford (Eugene, OR, USA)
. Del Fra (Roma, Italy)
. Frigerio (Padova, Italy)
. Frohardt (Detroit, MI, USA)
. Giambruno (Palermo, Italy)
. Gillio (Milano, Italy)
Goodman (Eugene, OR, USA)
. Gordeev (St. Petersburg, Russia)

aae

=

QoHAEPEQ-

ZEEECQE R

ZpprrUpprw



xii List of Participants

T. Grundhofer (Tibingen, Germany)
R. Guralnick (Los Angeles, CA, USA)
B. Hartley (Manchester, UK)

M. Herzog (Tel Aviv, Israel)

J. Humphreys (Liverpool, UK)

H. Ishibashi (Sakado, Japan)

P. Johnson (Manhattan, KS, USA)
M. Joswig (Tibingen, Germany)
A. Juhasz (Haifa, Israel)

W. Kantor (Eugene, OR, USA)

O. Kegel (Freiburg, Germany)

. Kramer (Tiibingen, Germany)

. Kuhn (Milano, Italy)

. Lausch (Wirzburg, Germany)

. Lawther (Pasadena, CA, USA)

. van Leeuwen (Amsterdam, The Netherlands)
. Liebeck (London, UK)

. Liebler (Fort Collins, CO, USA)
. Loewe (Braunschweig, Germany)
. Longobardi (Napoli, Italy)

. Lucchini (Padova, Italy)

. Lunardon (Napoli, Italy)

. Magaard (Detroit, MI, USA)

. Mainardis (Trento, Italy)

. Maj (Napoli, Italy)

van Maldeghem (Gent, Belgium)
Malle (Heidelberg, Germany)
Mann (Jerusalem, Israel)
Marinosci Micelli (Lecce, Italy)
Mazurov (Novosibirsk, Russia)
McCulloch (Dublin, Ireland)
Meixner (Giessen, Germany)

. Micelli (Lecce, Italy)

Monti (Trento, Italy)

. Muzychuk (Ramat-Gan, Israel)
. Napolitani (Padova, Italy)

Ott (Braunschweig, Germany)

. Pannone (Florence, Italy)

. Pasini (Siena, Italy)

PO EZUCOHIN < TP QEZRERQOPIRIZZIRO

Mubhlherr (Tibingen, Germany & Bruxelles, Belgium)



List of Participants

S. Pellegrini (Brescia, Italy)

G. M. Cattaneo Piacentini (Roma, Italy)
S. Pianta (Brescia, Italy)

P. Plaumann (Erlangen, Germany)
E. Plotkin (Ramat-Gan, Israel)

A. Prince (Edinburg, UK)

G. Roehrle (Bielefeld, Germany)

L. Rosati (Firenze, Italy)

J. Sax] (Cambridge, UK)

R. Scharlau (Bielefeld, Germany)
C. Scoppola (Roma, Italy)

G. Seitz (Eugene, OR, USA)

L. Serena (Firenze, Italy)

E. Shult (Manhattan, KS, USA)

V. De Smet (Gent, Belgium)

K. van Steen (Gent, Belgium)

M. Tamburini (Brescia, Italy)

P. Terwilliger (Madison, WI, USA)
D. Testerman (Middletown, CT, USA)
C. Tibiletti (Milano, Italy)

F. Timmesfeld (Giessen, Germany)
J. Tits (Paris, France)

A. Torre (Frascati-Roma, Italy)

A. Valenti (Palermo, Italy)

A. Valette (Neuchatel, Switzerland)
N. Vavilov (St. Petersburg, Russia & Bielefeld, Germany)
J. Ward (Galway, Ireland)

T. Weigel (Freiburg, Germany)

J. Wilson (Birmingham, UK)

A. Woldar (Villanova, PA, USA)
A. Zalesskii (Minsk, Bielorussia)

V. Zambelli (Milano, Italy)

F. Zara (Amiens, France)

P. Zieschang (Kiel, Germany)

xiii






Representations of Groups on
Finite Simplicial Complexes

MICHAEL ASCHBACHER
California Institute of Technology

Until recently there have been relatively few articles in the finite group
theoretic literature on representations of finite groups on simplicial com-
plexes. However in the last few years that situation has begun to change.
This paper discusses some of the activity in the area. We begin with a
fairly general discussion intended to give a feeling for the kind of activity
now going on. Since space is limited, we touch on only a few examples of
such activity, and to provide focus, we eventually concentrate on p-group
complexes of finite groups. In the end we concentrate even further on a
particular problem in the area of p-group complexes: the question of when
p-group complexes of finite groups are simply connected. There we go into
more detail.

This volume is devoted to groups of Lie type and their geometries. The
p-group complexes of a group G should be viewed as geometries for G. The
p-group complexes of the groups of Lie type will be featured prominently
here. In particular we will see that if G is of Lie type and characteristic p
then the p-group complexes of G are homotopy equivalent to the building
of G.

The term ”simplicial complex” is used here to mean an abstract simplicial
complex. Thus a simplicial complez K consists of a set K of objects called
vertices together with a collection of finite subsets of K called stmplices such
that each subset of a simplex is a simplex. The term simplicial complex is
often used in the topological literature for a geometric realization of the
abstract complex; the reader may be more familiar with this latter usage.

A simplex s = {z¢,... ,2zk} is of dimension k if it has k + 1 vertices.
The dimension of K is the maximum dimension of a simplex of K. Most
of the complexes we will consider are finite. Morphisms in the category
are the simplicial maps which are maps of vertices which take simplices to
simplices.

Examples (1) Let A be a graph. The cligue complez K(A) of A is the
simplicial complex whose vertices are the vertices of A and whose simplices
are the finite cliques of A. Conversely given a simplicial complex L the
graph A(L) of L is the graph on the vertices of L with z adjacent to y if

This work was partially supported by NSF DMS-9101237



2 ASCHBACHER: Finite simplicial complexes

{z,y} is a simplex. Notice L is a subcomplex of K(A(L)). L is said to be
connected if its graph is connected.

(2) Let G be a finite group, p a prime, and A,(G) the commuting graph
on the set of all subgroups of G of order p. The commauting complez K,(G)
of G is the clique complex K(Ap(G)). The commuting complex is one of the
p-group complexes of G. Those with some background in finite simple group
theory know that the graph A,(G) has long been important in simple group
theory, that it is elementary and well known that A,(G) is disconnected if
and only if G has a strongly p-embedded subgroup, and that groups with a
strongly p-embedded subgroup are of great importance in the proof of the
Classification of the finite simple groups.

(3) Define a geometric complez to be a Tits geometry I' on an index set
I together with a set C of chambers of ' (ie. flags of type I) such that
each flag of rank at most 2 is contained in some member of C. The complex
can be regarded as a simplicial complex whose vertices are the objects of
I’ and simplices are the nonempty flags contained in members of C. Thus
the geometric complex is a subcomplex of the clique complex of I'. Those
familiar with chamber systems will observe that the category of geometric
complexes is isomorphic to the category of chamber systems X such that
for each z € X and index j € I, {2z} = N[z]v and [z]; = Neplzla-
Chamber systems were introduced by Tits in part because the category of
Tits geometries is too small. I find the simplicial complex point of view a
more geometric and intuitive way to extend the category of geometries.

(4) Let G be a group, and F = (G, : i € I) a finite family of subgroups
of G. Define C(G, F) to be the geometric complex whose vertex set is the
union of the coset spaces G/G;, i € I, with a set s of vertices a simplex if
and only if (x¢, X # @. Call such a complex a coset complez.

In this example each vertex G;z has a type 7(G;z) = i € I and the
maximal simplices are indeed of type I; eg. if s is a simplex then there is
£ €(\xesX and s =5;, = {Gjz:j € J}, where J =7(s),s0 s =5;. C
S1,z of type I. Finally G is represented as a group of automorphisms of
C(G,F) via right multiplication and G is transitive on simplices of type J
for each J C I. Conversely any geometric complex K on I admitting a
group of automorphisms transitive on simplices of each type is isomorphic
to a coset complex.

(5) Let P be a poset. The order complez O(P) of P is the simplicial
complex whose vertices are the members of P and whose simplices are the
finite chains in P. We often write P for O(P).

(6) Let G be a finite group, p a prime, and 5,(G) the set of all nontrivial
p-subgroups of G partially ordered by inclusion. We also write Sp(G) for
the order complex of this poset, and call this complex the Brown complez
of G at p. The subcomplex A,(G) of all elementary abelian p-subgroups is
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the Quillen complez. Thus we have two more p-group complexes associated
to G. There are still others.

A geometric realization of K is simply an identification of the vertices
of K with suitable points in some Euclidean space, with a simplex iden-
tified with the convex closure of its vertices. The realization is then re-
garded as a topological subspace of Euclidean space. We can then define
two complexes to be homotopy equivalent if their geometric realizations are
homotopy equivalent.

Invariants of the homotopy type of the complex are its homology groups
H,(K) and its fundamental group n;(K). These can be defined combina-
torially without reference to the geometric realization.

Examples (7) K is contractible if it has the same homotopy type as a point.
In that case the reduced homology of K and its fundamental group are
trivial. Recall K is acyclic if its reduced homology is trivial and K is simply
connected if its fundamental group is trivial. So contractible complexes are
acyclic and simply connected.

(8) Let G be a finite group and p a prime. The commuting complex, the
Brown complex, and the Quillen complex at the prime p are all of the same
homotopy type.

(9) Let K be a simplicial complex. The barycentric subdivision sd(K) of
K is the order complex of the poset of simplices of K ordered by inclusion.
It is well known that sd(K') has the same homotopy type as K.

One of the most useful tools available in this area is to replace a complex
by another complex of the same homotopy type which may be better suited
to analysis. We will see this tool used many times. Here are three lemmas
which allow us to make such replacements:

LEMMA 1. Let f: P — Q be a map of posets. Then

(1) (Quillen [Q]) If f~Y(Q(= q)) is contractible for all ¢ € Q then f :
O(P) — O(Q) is a homotopy equivalence.

(2) [A] Assume for each ¢ € Q, f~Y(Q(= q)) is min{l,h(q) — 1}-
connected, Q(> q) is connected if h(q) = 0, and if h(q) = 1 then either
Q(> q) # @ or f~YQ(> ¢q)) is simply connected. Then P is simply con-
nected if Q is simply connected.

Here —1,0, 1-connectivity means nonempty, connected, simply connect-

ed, respectively. Q(2 ¢) = {z € Q@ : ¢ > ¢} and Q(> ¢), Q(£ z), and
Q(< z) are defined similarly. The height of ¢ € Q is h(g) = dim(Q(< ¢)).
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LEMMA 2. Let C be a cover of a simplicial complex K by subcomplexes.
The nerve N(C) of C is the complex with vertex set C and s C C a simplex
if and only if I(s) = (\xec X # D. Assume I(s) is empty or contractible
for all s. Then N(C) and K have the same homotopy type.

LEMMA 3. (Quillen [Q]) Let G be a group of automorphisms of the poset
P and let Q be the order complex of some poset of subgroups of G. Assume

(1) For each z € P, QN G, is contractible (simply connected).

(2) For each X € Q, Fizp(X) is contractible (simply connected).

(3) If X € Q and z € Fizp(X) then P(< z) C Fizp(X).

Then P and Q have the same homotopy type. (P is simply connected if
and only if Q is simply connected.)

There are two directions one can go in the area. First, use techniques and
ideas from combinatorial topology to prove things about finite groups and
geometries. Second, use modern finite group theory and finite geometry to
prove results in combinatorial topology. We give a quick example of each
approach.

Recall K is simply connected if m;(K) is trivial. Equivalently K has
no proper connected coverings. Coverings of K correspond to topological
coverings of its geometric realization. Combinatorially a covering of K is a
surjective local isomorphism f : K — K of simplicial complexes.

In simple group theory we often wish to characterize a group G as the
unique group satisfying suitable hypotheses. In particular in the Classifica-
tion of the finite simple groups we need to characterize each simple group
via suitable hypotheses on local subgroups, preferably centralizers of involu-
tions. In [AS1], Yoav Segev and I came up with an approach to this problem
with a topological flavor. In brief, given some hypotheses H on the central-
izer of an involution in some finite simple group G, we produce a family F
of subgroups of G and form the coset complex K = C(G,F). For J C I let
Gy= njeJ G, be the stablizer of the simplex S of type J. The inclusion
maps Gy — Gk _for K C J define an amalgam A of groups and there is
a largest group G realizing this family and a surjective local isomorphism
o : G — G. We show A is determined up to isomorphism; hence if G is any
group satisfying hypotheses H, there is a local isomorphism & : G -G

Now G acts on its coset complex K and there is a covering f : K- K
of complexes. OQur approach is to show K is simply connected; hence f
and therefore also a is an isomorphism. But then @ : G — G is a group
homomorphism and as G is simple, & is an isomorphism, so G is determined
up to isomorphism.

Segev and I usually use a lot of knowledge of the complex K and some
simple minded techniques to show K is simply connected. It would be good
to have more powerful techniques.
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So far the applications to finite group theory involve only low dimen-
sional properties of complexes; ie. connectivity and simple connectivity are
properties of the 1-skeleton and 2-skeleton. However Alperin’s Conjecture
can be stated in terms of the p-group complexes; this may turn out to be
an application which uses the full strength of the theory. Also Webb has
results which describe the p-part of the cohomology of a finite group G in
terms of the cohomology of stabilizers of simplices in any p-group complex
of G, perhaps making possible an inductive approach to the cohomology of
finite groups. See Webb’s survey article [W] for a discussion of these topics.

Let us next turn to an example of how finite simple group theory can be
used to answer a question from combinatorial topology. Let K be a finite
acyclic simplicial complex and G < Aut(K). Replacing K by its barycentric
subdivision, we can assume with little loss of generality that the action of G
on K is admissible; that is if g € G fixes a simplex then it fixes each vertex
of the simplex. The Lefschetz Fixed Point Theorem says that g has a fixed
point on K; but what about G? Constructions of Robert Oliver [O] show
that for most finite groups G there exist finite acyclic complexes K such
that G has no fixed points on K. But if the dimension of K is small one
can hope to prove something,.

CONIECTURE. (Warren Dicks) If G is a finite group acting admissibly on a
2-dimensional contractible complex then G has a fixed point.

The Conjecture fails if we weaken ”contractible” to acyclic; the Poincaré
dodecahedron disk is a 2-dimensional acyclic complex admitting the fixed
point free action of As. Its fundamental group is SL,(5).

Tensoring the simplicial chain complex with any ring R we get homology
H,(K, R) with coeficients in R. K is R-acyclic if H,(K,R) =0. f v is a
set of primes define K to be m-acyclic if K is F- acyclic for each field F of
characteristic p and each p € «.

THEOREM. (Aschbacher-Segev [AS3]) If G is finite group and K is n(G)-
acyclic finite complex with G admissible on K then either G has a fixed
point on K or G has a composition factor which is a rank 1 group of Lie
type or Ji.

We also construct a family of 2-dimensional complexes admitting the
action of G = PGL2(q), which appear to be 7(G)-acyclic when ¢ is even.
We call these complexes polygon complezes. Each is of the form C(G, F),
where F = (G;,G2,G3) with G, a Borel subgroup of G and G; and G;
normalizers of suitable representatives of the 2 classes of maximal tori. More

concretely, one can think of the coset space G/G) as points on the projective
line X = GF(q) U {0}, G/G2 as edges {z,y} € X x X, and G/G; as
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g+ 1-gons on X. The Poincaré dodecahedron disk is the polygon complex
for ¢ = 4. Using Mathematica we calculated the homology groups for
¢ £ 16 and Richard Wilson made a pseudo calculation for ¢ = 32 for one
of the complexes. The complexes were p-acyclic for all primes distinct from
17,1087,239,{67, 659, 1033}, for ¢ = 8, 16,16,32, respectively. We find these
primes mysterious.

This leaves open the Dicks Conjecture. One can also ask if As is the
unique simple group acting without fixed points on a 2-dimensional Z-
acyclic complex.

We now concentrate on p-subgroup complexes of finite groups. The
Brown and Quillen complexes of a finite group G were introduced by Brown
[B] and Quillen [Q)], presumably to study group cohomology. As indicated
earlier, the graph of the commuting complex has long been important in
simple group theory. To get some feel for these complexes let us consider
an example:

Example (10) Let G be a finite simple group of Lie type in characteristic
p- Then the building of G is a finite simplicial complex; indeed the building
is the coset complex of the family of maximal parabolics over a fixed Borel
subgroup. It is easy to show that the building has the same homotopy type
as §,(G). By the Solomon-Tits Theorem, the building is spherical; that is
it is simply connected if the dimension is at least 2, and reduced homology
vanishes except in the top dimension. The top dimensional homology is the
Steinberg module for G.

More generally we would like to know the homology and fundamental
group of S§,(G), for G simple and p a prime divisor of G, and we want
results which reduce problems about p-group complexes of general finite
groups to problems about simple groups. In a moment, we illustrate with
a discussion of simply connectivity of p-group complexes.

The problem on p-group complexes with the most history and visibility
is the Quillen Conjecture:

QUILLEN CONJECTURE. Let G be a finite group and p a prime. Then S,(G)
is contractible if and only if Op(G) # 1.

One direction is easy: if Op(G) # 1 then S,(G) is contractible. The
opposite direction was proved by Quillen [Q] for solvable groups. It is
known to be true for simple groups. In [ASm], Steve Smith and I show
that if p > 5 and G has no components which are unitary groups then
the Conjecture holds. If one could show the top dimensional homology
of A,(Un(q)) is nontrivial for p dividing ¢ + 1 then the Conjecture would
(essentially) be settled for p > 5.
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In the remainder of the talk we will concentrate on the following question:

QUESTION 1. Let G be a finite group and p a prime. When is K,(G) simply
connected?

If 0,(G) # 1 we just saw that K,(G) is contractible and hence simply
connected, so the interesting case occurs when 0,(G) = 1. We will see that
in that event a necessary condition for K,(G) to be simply connected is
that my(G) > 2. (Recall mp(G) is the p-rank of G; ie. the largest n such
that G has a subgroup isomorphic to n copies of the group of order p.) The
answer to Question 1 seems to be that if m,(G) > 2 then K,(G) is almost
always simply connected. As is usual in finite group theory, a strategy for
proving this conjecture involves two steps:

(1) Reduction: Reduce the simple connectivity of K,(G) for the general
finite group G to the simply connectivity of K,(Gp) for certain minimal
groups Gj.

(2) Analysis of Minimal Groups: Determine when K,(Gy) is simply con-
nected for the minimal groups Gg.

The reduction step has been accomplished in [A]. Minimal groups include
the simple groups. Analysis of the minimal groups is begun in [A], [S], and
[D]. I regard this project as a test case for a more ambitious analysis of the
behavior of the p-group complexes of finite groups; eg. obtaining a qualita-
tive description of the homology of these complexes including a reduction
theory, and a precise description of the homology of an appropriate set of
minimal groups.

Our first set of minimal groups is the set Miny of groups G such that
G = HA with A an elementary abelian p-group, H a normal subgroup
of G of order prime to p, O,(G) = 1, and G is minimal subject to these
constraints. The case where G is solvable was handled by Quillen in [Q):

THEOREM. (Quillen) If G is solvable in Miny then Ap(G) is spherical. That
is Hi(A,(G)) = 0 for k < dim(A,(G)) = m,(G) — 1 and A,(G) is simply
connected if m,(G) > 2.

One can ask if Gy € Miny is nonsolvable is Quillin’s result still true? We
conjecture at least:

CONJECTURE. Let G be a finite group such that G = AF*(G), where A is
an elementary abelian p-subgroup of rank at least 3 and F*(G) is the direct
product of the A-conjugates of a simple component L of G of order prime
to p. Then K,(G) is simply connected.
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The following result from [A] supplies strong evidence for the conjecture,
in essence reducing it to the case where L is a group of Lie type and Lie
rank 1 or a sporadic group.

THEOREM 3. Assume G and L satisfy the hypotheses of the Conjecture
and that the Conjecture holds in proper sections of G. Then

(1) If L is of Lie type and Lie rank at least 2 then K,(G) is simply
connected.

(2) If L = Ly(q) with q even then K,(G) is simply connected.

(3) If L is an alternating group then K,(G) is simply connected.

(4) If L is a Mathieu group then K,(G) is simply connected.

The minimal groups not in Ming are the finite simple groups of p-rank
at least 3. The next two theorems from [A] supply the reduction step
which reduces the question of simple connectivity of Kp(G) to the case G
minimal. Given a graph A and a vertex z of A, write A(z) for the set of
vertices distinct from z and adjacent to z in A.

THEOREM 1. Assume the Conjecture and let G be a finite group, p a prime
divisor of the order of G, and A = A,(G). Assume A(r) is connected for all
z € A and let G = G/0p(G). Then exactly one of the following holds:

(1) Kp(G) is simply connected

(2) G = G x G3 and G; has a strongly p-embedded subgroup for i = 1
and 2.

(3) G = X(G, x G,), for some X € A, p = 3,5, G = Ly(8), 52(32),
respectively, G2 is a nonabelian simple group with a strongly p-embedded
subgroup, and X induces outer automorphisms on G; for i = 1 and 2.

(4) G is almost simple and K,(G) and K,(F*(G)) are not simply con-
nected.

THEOREM 2. Let G be a finite group, p a prime divisor of the order of
G, and assume 0,(G) = 1, A = A,(G) is connected, and H,(K,(G)) = 0.
Then my(G) > 2 and A(z) is connected for each z € Ap(G).

Theorems 1 and 2 say that, modulo the Conjecture and a short list of
exceptions, K,(G) is simply connected if and only if m,(G) > 2 and A(z)
is connected for each z € A,(G).

The following observations expand upon these points:

Remarks (1) If O,(G) # 1 then G is contractible and hence simply con-
nected. Thus the restriction that Op(G) = 1 in Theorem 2 causes no loss
of generality.
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(2) It is well known that A,(G) is disconnected if and only if G has a
strongly p-embedded subgroup. (cf. 44.6 in [FGT]) Moreover we know all
groups with strongly p-embedded subgroups. (cf. [A]) Thus the restriction
in Theorem 2 that A be connected results in no loss of generality, and the
groups in Cases (2) and (3) of Theorem 1 are completely described.

(3) Recall a simplicial complex is simply connected if and only if its
fundamental group is trivial, while the first homology group of the complex
is the abelianization =, /7] of its fundamental group. Thus the hypothesis
in Theorem 2 that H,(K,(G)) = 0 is weaker than simple connectivity. So
Theorem 2 says that the hypothesis in Theorem 1 that A(z) be connected
for each z € A is necessary for simple connectivity, and that if 0,(G) =1
and K,(G) is simply connected then m,(G) > 2.

(4) The condition that A(z) be connected has various equivalent formula-
tions; it is roughly equivalent to Cg(z) = I'; p(Cg(z)) for P € Syl,(Cq(z)),
for those readers who are simple group theorists. All finite groups G with
mp(G) > 3 such that A(z) is disconnected for some z € A are determined
in [A]. Thus Theorems 1 and 2 constitute a fairly complete reduction to the
simple case, modulo the Conjecture.

(5) Recall from the Classification of the finite simple groups that each
nonabelian simple group L is an alternating group, a group of Lie type, or
one of the 26 sporadic groups. Thus Theorem 3 reduces a verification of the
Conjecture to the case where L is of Lie type and Lie rank 1 (ze. L & Ly(q),
Us(g), Sz(g), or 2G2(q)) or L is one of the 21 sporadic groups which are
not Mathieu groups. We will see one possible approach to handling these
groups in a while.

In short Theorems 1 through 3 reduce the problem of determining when
K,(G) is simply connected to (a) the problem of verifying the Conjecture
for rank 1 groups of Lie type and the sporadic groups, and (b) determining
when K,(G) is simply connected for G a finite simple group.

We now try to give enough of an idea of the proof of Theorem 1 to see
how the minimal groups arise. Recall part 2 of Lemma 1. Let H be a normal
subgroup of order prime to p, G = G/H, P = A,(G), and Q = A,(G). Let
f: P — Q be the map f(A) = A. Then f~1(Q(< 4)) = A,(AH), so to
achieve the hypotheses of Lemma 1, part 2, we need to know A,(AH) is
simply connected if h(A4)) > 1; as h(A) = m,(A) — 1, this is equivalent to
mp(A) > 2. This can be proved by an easy induction argument if it holds
for AH € Min,.

We also need to know that Q(> A) is connected if h(A4) = 0; de. if 4
is of order p then m,(Cg(A)) > 1, which follows if my(G) > 1. Finally if
R(A) = 1 we need Q(> A) # D; te. if my(A) = 2 then m,(Cg(4)) > 2,
which holds if m,(G) > 2 and A(z) is connected for each z of order p in A.
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So Lemma 1 allows us to conclude:

LEMMA 4. Assume the conjecture with m,(G) > 2, let H be a normal
p'-subgroup of G, A(z) connected for all z of order p in G, and A,(G/H)
simply connected. Then A,(G) is simply connected.

The converse of Lemma 4 is fairly easy to prove, so we can reduce to the
case Oy (G) = 0,(G) = 1. To reduce to the case G simple requires:

LEMMA 5. Let H 4 G such that K,(Cy(z)) is connected for all z € A(G) —
A(H) and K,(H) is simply connected. Then K,(G) is simply connected.

Lemma 5 is proved using results of Yoav Segev and the author on simple
connectivity of simplicial complexes found in [AS2].

Let us next consider the Conjecture. The following lemma is a result of
Segev in [S] extending a result in [A] used to prove Theorem 3:

LEMMA 6. Assume the hypotheses of the conjecture and let B = N4(L).
Assume F is a family of B-invariant proper subgroups of L such that

(1) No(X)NCL(B) £ X foreach X € F.

(2) C(G, F) is simply connected.

(3) A,({X, A)) is simply connected for each X € F.

(4) linke(g,7)(X) is connected for all X € X.

(5) The truncation of C(G, F) at any 2-subset of F is connected.

(6) f B#1 then C (B)=(Cx(B): X € F).

Then G satisfies the Conjecture.

Hypothesis (3) holds automatically in a minimal counter example to the
conjecture. Hypotheses (4) and (5) hold if the coset complex C(G,F) is
residually connected. If A is regular on the components of G then (6) is
vacuously satisfied; if not L is of Lie type and B is of order p inducing
field automorphisms on L. The critical condition is the hypothesis that the
coset complex be simply connected. That is why small groups like groups
of Lie type of Lie rank 1 cause problems; their subgroup structure is not
rich enough to have a coset complex for which simple connectivity is easy
to verify. However Segev has shown in [S] that:

THEOREM 4. (Segev) Assume the hypotheses of the Conjecture with A
regular on the components of G and L = Ly(q), Sz(g), or Us(r), r = 0,1
mod 3. Then the Conjecture holds.
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Finally let us discuss what is known about the simple connectivity of
Kp(G) for G a finite simple group with m,(G) > 2.

If G is of Lie type and characteristic p then by Example (10), K,(G) has
the homotopy type of the building B of G. By the Solomon-Tits Theorem
[ST], B is spherical, so Kp(G) is simply connected if and only if G has Lie
rank at least 3.

Let G = GL,(g) with ¢ =1 mod p. Using the Solomon-Tits Theorem
and Lemma 3, Quillen shows in [Q] that A,(G)(> Z) is spherical for Z of
order p in Z(G). That is a large subcomplex of A,(PGL,(g)) is spherical.
If p does not divide n then A,(G) = Ap(La(q))-

QUESTION 2. Let n =0 mod p and ¢ =1 mod p. What does A,(Ln(g))
look like? How close is its homology to that of A,(G)(> Z)?

K. M. Das, a graduate student at Caltech is analyzing the simple con-
nectivity of Ap(G) when G is a finite classical group and p a prime divisor
of the order of G. (Recall that by the discussion in Example 10, we may as
well assume p is not the natural characteristic of the group.) For example
he has used Quillen’s result to prove that .Ay(L,(g)) is simply connected
when m,(LA(q)) > 2 and p does not divide ¢ or ¢ — 1. He has shown that
Ap(Spn(q)) is spherical when ¢ =1 mod p, and is close to showing Sp,(q))
is simply connected when p does not divide g or ¢ — 1. He is in the process
of analyzing U,(q) and has analogous results for that family of classical
groups.

Notice the following result is a special case of Lemma 3:

LEMMA 7. Let G be a group of automorphisms of a poset P. Assume

(1) For each z € P, A,(G.) is simply connected, and -

(2) For each A € A,(G), Fizp(A) is simply connected and P(< z) C
Fizp(A) for each z € Fizp(A).

Then P is simply connected if and only if A,(G) is simply connected.

In the case of G = GL,(g), Das uses Lemma 7 with P the the truncation
of the barycentric subdivision of the projective geometry of the natural
module for G at the subspaces of dimension divisible by d,(g). Here dp(g)
is the least positive integer d such that ¢ = 1 mod p. The truncation of
a building is spherical so if dim(P) > 2 then P is simply connected and
Lemma 7 says A,(G) is simply connected. If m,(G) > 2 and dim(P) = 2
then n = 3d,(¢) and some extra work and ingenuity is necessary. Similar
arguments are useful for the other classical groups, although again more
ideas are required. Along the way Das builds up a library of interesting
complexes and homotopy equivalences among these complexes which should
be useful in future work in the field.
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Coxeter Groups and Matroids
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Introduction

W P-matroids are combinatorial objects introduced by I. M. Gelfand and
V. V. Serganova in [GS1] as a generalization of the classical notion of matroid.
The definition of a W P-matroid is given in terms of the Bruhat ordering on
a Coxeter group.

Let P < W be a standard parabolic subgroup of a Cozeter group
W. A map
p:W—W/P

is called a W P-matroid if
w () < wl ()

for all u,w € W, where < is the Bruhat ordering of the left coset
space W/P.

Our approach to W P-matroids is based on a systematic use of Coxeter
complexes for Coxeter groups. It will be convenient for us to identify a Cox-
eter group W with its Coxeter complex. This enables us to state the main
result of the paper using the language of the combinatorial geometry of Cox-
eter complexes.

Theorem Let W be a Cozeter group, P a finite standard parabolic subgroup
of W, and uy: W — W/P o WP-matroid. Then

(1) The fibers u~2[m], m € W/P, of the map p are convex subsets of W.
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(2) If two fibers u~'[m)] and p~'[n] of p are adjacent then their images m,n
are symmetric with respect to some wall o of the Cozeter complez W.
Moreover, all common panels of p='[m] and p~[n] lie on o.

(8) If W is infinite, then the nonempty fibers of the map pu are also infinite.

This result provides a combinatorial version of properties of convex poly-
hedra associated with matroids [GGMS] and W P-matroids for finite Weyl
groups [GS2]. Notice that the class of Coxeter groups covered by the theorem
includes, in particular, Coxeter groups W of spherical, affine and hyperbolic
types. In all these cases all proper parabolic subgroups of W are finite.

A convenient reference for the system of definitions related to Coxeter
groups and complexes and Tits systems and freely used throughout the paper
is M. Ronan’s book [Ron|. But we made every effort to make the paper
relatively self-contained. We have also devoted two sections of the paper to
discussion of the background and motivation for our results.

1 Matroids

Matroids. According to one of the many equivalent definitions, a pair M =
(E,B), where E is a finite set and B C 2F is a set of subsets in E, is called a
matroid if it satisfies the Exchange Principle:

For all A,B € B and 2 € A\ B there ezists y € B\ A, such that
A\ {2} U {y} lies in B.

The set B is called the base set and its elements the bases of the matroid
M. We shall say that the base A\ {z}U{y} in the statement of the Exchange
Principle is obtained from the base A by the transposition (z,y). It can be
easily shown that all the bases of a matroid have the same cardinality, which
is called its rank.

If E is a vector configuration, i.e. a finite set of vectors in a finite-
dimensional vector space V, then a well-known fact from linear algebra asserts
that the set of all maximal linearly independent subsets of E is the base set
of a matroid on E. Historically, matroids were introduced as means of axiom-
atization, in purely combinatorial terms, of the notion of linear dependence
in vector spaces [Whi]. Easy examples show that, despite the origins of the
notion, not every matroid is representable, i.e. isomorphic to the matroid of
a vector configuration.

Matroids and Convex Polyhedra. We shall usually identify the under-
lying set E of the matroid M = (E, B) with the set {1,2,...,n}. Let now
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R™ be the n-dimensional real vector space with the canonical base e, ...,e,.
We set for every B € B
63 = Z e;.

i€B
Let A = A(M) be the convex hull of 65, B € B. This is a (solid) polytope.
The following beautiful theorem is due to I. M. Gelfand, M. Goresky,
R. MacPherson and V. V. Serganova [GGMS].

Fact 1.1 ([GGMS], Theorem 4.1) The points 64, A € B, form the vertez
set of A. Two vertices 84, 0p are adjacent (i.e. connected by an edge) if and
only if the bases A and B of the matroid can be obtained from each other by
a transposition.

Notice that if we consider the convex polyhedron A* dual to A (for a
definition see, for example, [Grii]), then two faces 8%, 65 are adjacent if and
only if the bases A and B can be obtained from each other by a transposition.
One of the main results of the present paper, Theorem 6.1, is a combinatorial
version of this remarkable property of matroids.

Maximality Principle for matroids. In what follows we shall work with
a definition of matroid in terms of orderings. This approach was developed
by D. Gale [Gal] as a solution of the problem of optimal assignment in ap-
plied combinatorics and later but independently used by I. M. Gelfand and
V. V. Serganova in their work on stratifications of flag varieties [GS2].

Let Pr = Pi(E) be the set of all k-element subsets in a finite set E =
{1,2,...,n}. We introduce a partial ordering < on Pj as follows. Let A, B €
P:., where

A=(t1,...,1), 01 <12 <...<1
and
B = (jl""’jk)’jl <j2 <... <jk1
then we set
A<B <<= 1 <j1,-- 0 <
Let W = Sym,, be the group of all permutations of the elements of E. Then
we can associate an ordering of P), with each w € W by putting

A<YB < wl'A<wB.
Clearly <! is just <.

Fact 1.2 (Gale [Gal], see also Gelfand - Serganova [GS1]) LetB C Ps.
The set B is the base set of some matroid if and only if B satisfies the Maxi-
mality Principle: for every w € Sym,, the set B contains an element A € B
maximal in B with respect to <¥:

B<YA for all B € B.
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(We call A the w-mazimal element in B).

Matroids as maps. Now let B be the base set of a matroid M on E =
{1,...,n} of rank k. We can define a map

B Symn — P

assigning to each w € Sym, an element A € B maximal in B with respect to
<. Obviously this map satisfies the inequality

p(u)<¥ p(w) @)
for all u,w € Sym,,. Since any k-element set B € P) can be made maximal
in Py after some reordering of the symbols 1,2,...,n, we have u[Sym.,] = B.

Vice versa, the image of every map u from Sym., to Py, satisfying the above
inequality, is the base set of some matroid.

2 Grassmann Varieties

In this section we follow [GS2] and use matroids for the description of com-
binatorial properties of Grassmann varieties. These applications to the ge-

ometry of Grassmannians are the main source of motivation for the theory of
W P-matroids.

Grassmann varieties and matroids. Let G, be the Grassmann variety
of k-dimensional vector subspaces in V = K™ with a standard basis ey, ..., e,.
Let V* be the dual space of V with the dual basis e3,...¢€}.

If now X € G, is a k-dimensional subspace in V = K™ then the subsets
J of E = {1,2,...,n} such that (¢|x | j € J) are a basis of X, form a
base set of a matroid. We denote this matroid by My and call it the matroid
associated with X.

Pliicker coordinates and the moment map. Now we restrict our at-
tention to the case K = C. Let ¢,..., ¢, be the standard basis in V = C*,
We write vectors from C" in the column form. Take a basis z,,...,z; in the
subspace X < V and form the coordinate matrix

Z1r Z12 ... Tik

Tpl Tp2 -+ Tpk

Notice that the rows of the matrix (z;;) form a vector configuration in the dual
space X*. Since a change of a base in V inflicts a linear transformation of the
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columns of the matrix (z;;) and since linear transformations of columns do not
change the pattern of linear dependence of the rows, the matroid associated
with the vector configuration of the rows coincides with the matroid Mx built
in the previous paragraph in a coordinate-free way.

Denote by p?*7* = p’, J € P4, the value of the minor formed by the rows
J1 < J2 < ...< ji of the matrix (z;;). Then the vector (p’)scp, is uniquely
determined up to multiplication by a scalar, and the quantities p’ are called
the Plicker coordinates of X.

Notice that the base set B of the matroid Mx can be determined in terms
of the Pliicker coordinates of X:

B={J¢€P,p #0}

Following [GGMS)] we define the moment map

A:Gpp — R
by ,
Tier, [P (X)P - 65
MX) = k ,
= e WP
where 65 = 3 ;c;¢; and ey, ..., e, is the canonical basis for R™.

The convexity property of the moment map. Now we introduce one
of the main results of [GGMS]. Let G = SL,(C), H the group of diagonal
matrices and B the group of upper triangular matrices in G. We introduce
also the groups N = Ng(H) and W = N/H. It is well-known that N consists
of the monomial matrices and W ~ Sym,,. Then (B, N)is a Tits system in G
(for definitions see [Til] or [Bou]). The subgroups G, H and B act naturally
on V = C". The stabilizer P of the k-dimensional subspace Ce;@...®Ce; is a
standard parabolic subgroup in G. The Grassmannian G,, j can be identified
with the factor space G/P. If X € Gp ., we denote by H - X the H-orbit of
X and by H - X its closure.

Fact 2.1 ([GGMS]) The image under the moment map of the closure of the
orbit H - X 1is the convez polyhedron associated with the matroid Mx:

ME-X) = A(Mx).

Moreover in every dimension m < n — 1 the map A induces a one-to-one
correspondence between the m-dimensional orbits of H in H - X and the open
m-dimensional faces of A(Mx).
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Stratification of G, . Set Wp = (N N P)/H, then Wp is the stabilizer
in W ~ Sym,, of the set {1,...,k}. We can identify P, with the factor set
WF = W/Wp. For any w € W we have the well-known Bruhat decomposition
of the Grassmannian G/P = Gp:

G/P= || wBwaP/P (2)

aEWP

(since the subgroups B, P, N contain H, the products of cosets and subgroups
in the formula are well defined). The sets wBw™'aP/P are called Schubert

cells. If X € G/P, then, since the decomposition (2) is disjoint, for every
w € W there is a unique o € WP such that

X € wBw™'aP/P.

We shall denote this o by px(w). Taking the intersection over all w € W,
we get
X € (| wBwux(w)P/P. (3)
weW
The expression in the right is called the thin Schubert cell of G/P containing
X. Obviously the thin Schubert cells form a partition of G/P.

Fact 2.2 ([GGMS]) Two points X,Y € G, i belong to the same thin Schu-
bert cell if and only if the corresponding matroids Mx and My coincide.

As a corollary we have an interpretation of thin Schubert cells in terms of
the moment map: two points X,Y € G, belong to the same Schubert cell
if and only if

MH-X)=MH'Y).
But we also have a matroid naturally associated with a Schubert cell:

Fact 2.3 (Borovik-Gelfand [BG1]) The map px : W — W¥ = P, as-
sociated with a Schubert cell in (3) satisfies

px(u) < px(w)

for all u,w € W. Moreover, the map ux coincides with the map from Sym,,
to P associated with the matroid Mx.

Matroids on Grassmannians: an approach via the Maximality Prin-
ciple. Let now X € G, be a k-dimensional vector subspace in C" and (z;;)
the coefficient matrix of a base in X.

Construction of the w-maximal base in the matroid Mx can be described
in a very elementary way. A permutation w € Sym, permutes the rows of the
matrix (z;;). Those rows of the original matrix which correspond to the last &
linearly independent rows of the permuted matrix constitute the w-maximal
basis in the matroid Mx.
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3 Coxeter groups and W P-matroids

Definitions and notations in this section are mostly standard and may be
found in [Bou| and [Ron].

3.1 Coxeter groups and Bruhat ordering

Bruhat Ordering. Let now W be a Coxeter group and S its set of dis-
tinguished involutive generators. Recall that the Bruhat ordering < on W is
defined as follows: let u, v € W. Then u < v if and only if there is a reduced
expression s;, - -+ s;, ( where s;; € §) for v such that u = 8i,, *** 8i;, Where
1_<_j1<j2<...<ijk.

We now state without proof a very important result about the Bruhat
ordering.

Fact 3.1 (Deodhar [Deol)]) If we fiz a reduced expression u = s; -+ - sy,
for an element u € W then
8;, -++8;  for all substrings
<up=¢ . 7 . . . .
reWo sy { Giedim L SN <2 < <gm <k }

Fact 3.1 shows that the relation v < u does not depend on the choice of
a reduced expression u = s;, +-- 8;, in its definition. Moreover now it can be
easily shown that < is an ordering so the name “Bruhat ordering” is justified.

The Bruhat ordering on W¥. Let P be a standard parabolic subgroup
in W, ie. P = (s;,j € J C I) is generated by some set of distinguished
generators for W. The following fact makes it clear how to define the Bruhat
ordering on the left coset set W¥ = W/P. (Compare with Corollary 5.12).

Fact 3.2 (see [Deo2], Lemma 2.1) (1) Any coset « € WF contains a
unique element w, minimal in a with respect to the Bruhat ordering.

(2) Let o, € WF be two cosets and a € o, b € B any representatives of
and 3, correspondingly. If ¢ < b, then w, < wg.

Following [Deo2], we introduce a partial ordering < on WF by putting
a < B if w, < wg. In view of Fact 3.2 this is equivalent to the condition that
a < b for some representativesa € o, b € §.
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W P-matroids. We define a W P-matroid as a map
p:W— WF
satisfying the inequality
0 () < o u(w)

for all u,w e W.

If P = 1, we prefer to use the term W-matroid. We will return to dis-
cussion of W-matroids and W P-matroids in Section 6 after developing a
geometric approach to the Bruhat ordering.

3.2 Matroids as a partial case of W P-matroids

Let E be the set {1,2,...,n} and as before let Sym, represent the symmetric
group on E. It is a well-known fact that W = Sym, is a Coxeter group
with the canonical transpositions s, = (12),s2 = (23),..., 8,1 =(n—1,n) as
distinguished generators.

Now let P = ((12),(23),...,(k — 1,k),(k+ 1,k + 2),...,(n — 1,n)). Then
P is the stabilizer of A = {1,2,...,k} € Ps.

Now W = Sym,, acts on Pj, transitively and P = Stab,. The 1-1 map

f: WP — P,
f: zP — 2zA

commutes with the action of W on WF and Pi. Moreover, WF and P, are
isomorphic as ordered sets (recall that we introduced the ordering < on P
in Section 1). This easy fact is well-known and belongs to folklore. We had
difficulties in finding an appropriate reference for a proof of it until we found
one in a preprint by A. Cohen and R. Cushman [CoS].

Fact 3.3 (See [CoS], Proposition 4.2) The map f : WF — Py pre-
serves the orderings < on WF and P;.

For this reason f preserves the orderings <* on W¥ (where  <¥ § is
understood as w™la < w~1g8) and Py, i.e.,

¢ <Y = fo) < f(¥)-

Thus a matroid of rank & on the set E = {1,2,...,n} can be interpreted
as a map u : Sym, — P; satisfying the inequality u(u) <* p(w) for all
u,w € W. It can also be interpreted as a map ' : W — W7 satisfying the
same inequality: p'(u) <* p'(w), where p' = f~1 o p.
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4 Tits Systems and Thin Schubert Cells

Having a definition of W P-matroid, we return to the discussion of applications
of W P-matroids and can now state Fact 2.3 in its full generality.

Consider a group G with a Tits system (B, N). Let H = BAN,W = N/H
and S = {s;, 7+ € I} the distinguished set of generators in the Weyl group
W. Recall that W is a Coxeter group with S the set of its distinguished
generators.

¥Jcllet P=P;=(B,s;1i€ J) be astandard parabolic subgroup
in G and Wp = (s;, ¢ € J) the corresponding parabolic subgroup in W. The
factor space G/ P is called a flag space for the group G.

Denote WF = W/Wp. Using the axioms of a Tits system, one can easily
prove that for any w € W there is a decomposition

G= || wBwaP

aEWP

into a disjoint union of double cosets with respect to subgroups wBw™laP.
Taking the natural projection of G onto G/ P, we consider this partition as a
decomposition of G/P:

G/P= || wBw aP/P.

aEWP

For any g € G and w € W, we denote by p,(w) a unique element in WF,
such that

g € wBw ™ yy(w)P.
Taking the intersection over all w € W, we have

gPe K= ()| wBw y,(w)P/P.

weW

The set K is called a thin Schubert cell on the flag space G/P. Obviously
thin Schubert cells form a partition of G/P generated by all partitions of
G/P into Schubert cells. Moreover, it is easy to see that the partition into
thin Schubert cells is invariant under the action of the Weyl group W.

The function p, : W —s W7 does not depend on choice of a coset gP € K
and thus can be denoted by uk.

Fact 4.1 (Borovik-Gelfand [BG1]) In this notation the function ux is a
W P-matroid.
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5 Coxeter Complexes

5.1 Galleries and walls

We refer to the work by J. Tits [Ti2] or to M. Ronan’s book [Ron] for
definitions of chamber systems, galleries, residues, panels.

The Coxeter Complex of a Coxeter Group. Let W be a Coxeter group
with a system of distinguished generators S = {s;,¢ € I'}. Take the elements
of W as chambers and for each i € I define i-adjacency by w ~ ws;. This
gives a chamber system over I which is called the Cozeter complez of the
Coxeter group W since the elements s; generate W it is connected.

Throughout - this paper W will denote both the Coxeter group and its
Coxeter complex.

Geodesic galleries and distance. Suppose z,y € W then there is a
gallery of type 1, ...1; from z to y if and only if y can be written as z3; --- §;,
or z~'y =3, --- §;, where

§,-J =1lor S5,
and the gallery is

(z, 25, 58, 85,, ..., 285, -+~ 85, = Y).

A gallery (z = 2¢, %1, ..., 2% = ¥) is said to have length k and the distance
d(z,y) between z and y is the least such k. (Recall that galleries are allowed
to stammer; this happens if for some j, §;, = 1). A gallery from z to y is
called geodesic if its length is d(z,y).

Fact 5.1 (see [Ron], Lemma 2.4) Ifz,y,y’' € W andy' is adjacent to and
distinct from y then
d(z,y')=d(z,y) £ 1.

Reflections and Walls. Let W be a Coxeter complex. A reflection s by
definition is a conjugate of some s;. Its wall o = o, consists of all panels of W
fixed by s (acting on the left). A panel lies on o, if and only if s interchanges
its two chambers. So if 7 is any i-panel and z is one of the two ¢-adjacent
chambers for which 7 is a common panel then zs; is the i-adjacent chamber to
z and s = zs;z7! is the unique reflection interchanging r and zs;. Thus each
panel lies on a unigue wall and there is a bijective correspondence between
the set of walls and the set of reflections. We say that the wall o, is the
wall of symmetry of two chambers z and y if the corresponding reflection s
interchanges z and y.
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A gallery (co, ..., ¢x) crosses the wall o, whenever the reflection s inter-
changes ¢;_; with ¢; (or equivalently whenever the panel {¢;_1, ¢;} lies on the
wall o,) for some 1,1 < i < k.

Fact 5.2 (see [Ron], Lemma 2.5) In o Cozeter complez W,
(1) A geodesic gallery cannot cross a given wall twice.

(2) Given chambers z and y, the number of times that a gallery from z to
y crosses a given wall is either even for each gallery or odd for each

gallery.

Half-complexes. Given a wall o it follows from Fact 5.2(2) that the rela-
tion

”Chambers x and y can be connected by a gallery which intersects
o an even number of times”

is an equivalence relation with precisely two classes of equivalence which are
called half-complezes determined by . They form complementary subsets of
W and are said to be opposite one another. If one is denoted o the other
is denoted —a. If s is a reflection let +a, denote the two half-complexes
determined by s. We shall say that a set X C W lies on one side of the
wall o if X lies entirely in one of two complementary half-complexes o
determined by o.

Convex sets. A set X of chambers is convez if any geodesic gallery between
two chambers of X lies entirely in X. Notice that obviously the intersection
of convex sets is convex.

Fact 5.3 (see [Ron], Proposition 2.6) In any Cozeter complez W,
(1) Half-complexes are convex.

(2) If o is ¢ half-complex and z, y adjacent chambers withz € a andy € —«
then a = {c: d(z,c) < d(y,c)}.

(8) There are natural bijective correspondences between the set of reflections,
the set of walls and the set of pairs of opposite half-complezes.

Before continuing more terms need to be defined. Suppose X is a set of
chambers in W and Y = W\ X. A panel = belongs to the boundary of X if
there are chambers r € X, y € Y for which = is a common panel. (It follows
that = is also on the boundary of Y). The boundary of X is denoted 4X. A
chamber c lies on the boundary 60X if a panel of ¢ lies on 6X. A supporting
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half-complez for a set of chambers X is a half-complex which contains X
and is formed by the wall on which lies some panel = of X the boundary
of X. The panel 7 is called a supporting panel. A supporting wall of X is
the bounding wall of a supporting half-complex for X and we say that the
supporting wall supports X. So if o is a supporting wall for X then X lies
entirely on one side of o and some panel of X lies on 0.

Lemma 5.4 If a is a half-complez determined by the wall o then o = da.

Proof: o lies entirely on a: Let 7 be a panel of ¢ and z, y its two cham-
bers. The gallery (z,y) intersects o once so z and y belong to opposite
half-complexes formed by o. This shows that o C Ga.

Oa lies entirely on o: Let 7 be a panel on da. One of the chambers of =,
say , belongs to o, another, say y, belongs to W\ o = —a. Then (z,y)is a
gallery which should intersect the wall ¢ an odd number of times. Obviously
this number is 1 and thus = = {z,y} lies on 0.

Hence o = da. m}

Foldings. Let a be any half-complex and s the corresponding reflection.
Fact 5.3(2) shows that s interchanges o and —a. Thus we have a map p, :
W — « defined by:

(z) = z Hfr€a
Pa s(z) if z¢ o
If z € a is adjacent to y € —a then p,(y) = pa(z) = = so p preserves i-
adjacency for each 1. We call p, the folding of W onto a. Notice that since
any gallery I' from a chamber ¢ € a to a chamber d € —a crosses the wall da

its image po(I') contains at least one repeated chamber and hence there is a
shorter gallery from c to p,(d) and therefore

d(c, pa(d)) < d(c, d).

Theorem 5.5 If W is a Cozeter complez then for any set X C W the fol-
lowing four statements are equivalent:

(1) X is the intersection of all the half-complezes containing X.
(2) X is convez.
(8) Every panel of 0X supports X.

(4) X is the intersection of its supporting half-complezes.
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Proof: (1) implies (2): Follows from Fact 5.3(1).

(2) implies (3): Assume that X C W is convex. Let # € X be a panel on
the boundary of X with two chambers z € X and y € W\ X and let o be the
wall containing w. We claim that X lies on one side of . Assume the contrary.
Let 2 € X where z and z lie on opposite sides of & and consider a geodesic
gallery T of length k connecting z and z, ' = (z = z¢,z1,...,2r = z). Since
T is a geodesic gallery it crosses o once only in the panel {z,, 2,41} say. Since
X is convex every chamber in I' lies in X. Now consider p the folding in
o which maps = onto y. As = and z lie on opposite sides of o, p leaves z
invariant.

Then

P(T) = (p(20) = ¥, p(21), - (25) = p(Zs41), p(Zo41), s P(2) = 2)
is a gallery of length % from y to z and hence

(ya p(zl)a ) p(zs)a P(l's+2), P(13+3), ) p(Z) = Z)
is a gallery of length £ — 1 from y to z. But then

(2, Y, P(zl)) A P(l's), P($s+2)» p(zs+3)7 RS ) p(Z) = Z)

is a gallery of length % from z to z and is therefore geodesic. As X is convex,
y € X. But by definition y ¢ X. This is a contradiction. Therefore X lies
entirely on one side of o and 7 supports X. Since 7 is an arbitrary panel of
06X, (3) holds.

(3) #mplies (4): Assume that a set X C W satisfies (3). Let X' be
the intersection of all half-complexes supporting X. We have to prove that
X = X'. Assume the contrary. Then as X C X', let € X and y € X'\ X.
By Fact 5.3(1) X' is convex so it contains a geodesic gallery connecting z and
y. So we can assume without loss of generality that the chambers z € X and
y € X'\ X are adjacent and have a panel 7 in common. But then = € X and
by our assumption 7 supports X so X lies on one side of #. This means that
the set X and the chamber y lie in opposite half-complexes determined by the
panel 7 and by definition of X', y ¢ X'. This is a contradiction. Therefore
X = X' and (4) holds.

(4) implies (1): Trivial.

Hence the four statements are equivalent. o

Finite Coxeter Complexes. If W is a finite Coxeter complex let diam(W)
denote the maximum distance between two chambers. Two chambers are
opposite if the distance between them is diam(W).

Fact 5.6 (see [Ron], Theorem 2.15) Let W be a finite Cozeter complez.
Then the following statements are true:
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(1) Every chamber has a unique opposite.

(2) If = and y are opposite chambers then every chamber in W lies on a
geodesic gallery from x to y.

5.2 The Bruhat Ordering

Foldings of galleries. Now we introduce the notion of a folding of a gallery
which will play a crucial role in the proofs of the main results of the present
work. Let ' = (o, ..., 2) be a gallery of type 4,...¢¢. This implies that for all
1<) <k,

s ! Tn if T stammers at {z,_1,2;}
4 Ti-18;, otherwise.

Let us denote

5 = 1 if T stammers at {z;_;,z;}
B 85, otherwise
and assume that I' does not stammer at the panel {z;_q,z,} for a fixed j.

We say that the gallery
I” = (20, ey Tj-1,T5-1, 2j_1§,'1+1 yeeey 2,'_151;]-“ ...5,',‘)

is obtained from T' by folding in the panel 7 ={z;_,,z;}. Notice that I"
necessarily has the same type as I'. Notice also that folding the gallery T' =
(%o, ..., z) subsequently in the panels {zx_1, 2}, {Zr-2, Ze-1},...,{Z0, 21} We
can always fold T onto any of its subgalleries IV = (zo,...,21), | < k.

The number of 3;,’s which are not equal to 1 is called the span of I' and
denoted span(T'). Notice that if I is geodesic then its span is equal to its
length. Also notice that folding a gallery decreases its span but leaves its
length the same.

We will frequently and without reference use the following useful remark
on foldings. In the previous notation if s = z;_;s;, a:,-'_‘l, then s is the reflection
in the wall o containing the panel = = {z;_,,z;} = {z;_1,2,-15;}. Notice
that

I = (20,21, .., Tjo1,8T;, ..., STk);

indeed for j < I <k
-1 ~ ~ ~ -
ST = .’L'J'_ls,'J.’tJ-_l . a:j_ls,-J T8y = 3:_.,‘_13,'”1 Tt 8y

as 5;, = s;,. This simple observation has the following useful geometric
interpretation which will also be frequently used:
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The end chambers zy, sz of the galleries T' and I respectively are
symmetric in the wall containing the panel 7 = {z;_4,2;}.

Theorem 5.7 Let u, v, w € W. Then the following four conditions are
equivalent:

(1) There is a geodesic gallery T' = (zo,...,2x) where w = 2o, u =24 and a
gallery (not necessarily geodesic) IV = (yo, ..., yx), W = Yo, v = y of the
same type 1) . ..t connecting w with the chambers u and v respectively.

(2) wlv<wlu.

8) There is a geodesic gallery I’ and a gallery T (not necessarily geodesic
g )
from w to u, v respectively such that either I' = I or I' is produced
from T by one or more foldings.

(4) For any geodesic gallery T' from w to u there is a gallery I from w to v
of the same type as T'.

Proof: (1) implies (2): This is Lemma 1 in [BG1).

(2) implies (3): Assume that y~'u > w™'v then a reduced expression
wly = s -+ s;, exists such that w™lv can be obtained from s;, - --s;, by
deleting some number of s; ’s. We know that ¢,...1; is the type of a geodesic
gallery from w to u, I" say. Then

T = (w, ws;,, ws;, Sig, ..., WS, ** - 8, = u).

1

If 5;, is deleted from the reduced expression for w™'u the gallery I'; is obtained

where

Dy o= (W, wsiy,. ., W84y - 8,1, WS4+ +~ 8,1, WSy * 8y Sipyyy ey WS+ 0 84 )

which is also of type 1;...1; and is obtained from I" by folding in the panel
(wsi; -+ 8i,_y, WSsy -+ 85y, 84, )

Repetition of this procedure produces a gallery IV of type 1;...ix which con-
nects w and w - w™'v = v. Therefore I is obtained by folding I' a finite
number of times. Hence (3) holds.

(3) tmplies (1): This is obvious since by definition folding of a gallery does
not change its type.

Therefore the three conditions (1), (2) and (3) are equivalent.

(2) implies (4): We can assume without loss of generality that w = 1.
Then this is immediate from Theorem 3.1 and the definition of the folding of
a gallery.
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(4) implies (1): This is trivial.
Therefore the four conditions (1), (2), (3) and (4) are equivalent. o
The relation
v<v<=wlu<wlv
will be called the Bruhat ordering with center w. Clearly <! is just the Bruhat

ordering. We will use mostly the geometric form of the definition (parts (1),
(3) and (4) of Theorem 5.7).

The following simple lemma will be used later:

Lemma 5.8 IfT' = (zo,..., zx) s & geodesic gallery from w = zo to u = z;
andv=12;, 0<1<k, then v <* u.

Proof: Let I = (z,...,z;) be the subgallery from w = z, to v = z; obtained
from I' by subsequent foldings in the panels
{mk—ly 2k}a {2k—2a 2]:—1}’ ey {27.71, 2l+1}-

Then by Theorem 5.7,

w v <wlu

and hence v <% u. (]

5.3 Bruhat Ordering on W/P

Let W = (s;, i € I) be a Coxeter group and J C I. Denote P = (s;, 7 € J).
Then J-residues of W are precisely the left cosets of P in W because by
definition J-residues are classes of the equivalence relation:

W~ U <> w=usj, ‘-8, for some jq,...,Jx € J,

or, what is the same, w = wv for some v € P. So we identify the set of
all J-residues with the left factor set WX = W/P. Now we introduce the
Bruhat ordering on W¥ for which we need the following theorem (which is a
geometrical form of Fact 3.2):

Fact 5.9 (see [Ron], Theorem 2.9) Given anyw € W and any J-residue
@:
(1) There is a unique chamber of ¢ nearest w (we call it proj,w).
(2) For any chamber x € ¢, there is a geodesic gallery from w to z via
projow.
Now if ¢, are two J-residues and w € W we set
¢ <* P <= projow <¥ projyw.
Corollary 5.10 For all u € ¢, proj,w <* u.
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Proof: Immediate consequence of Fact 5.9(2) and Lemma 5.8. o

Lemma 5.11 Let ¢, ¢ be two J-residues and = € ¢, y € ¢ be chambers.
Then if z <¥ y it follows that proj,w <* projyw.

Proof: Let I be a geodesic gallery from w to y which contains projyw. By
Fact 5.9(2) such a gallery exists. Since z < y, by Theorem 5.7 there is a
gallery I from z to w of the same type as I obtained by foldings of I'. Denote
z¢ = proj,w and yo = projyw. Now let yg, y' be the images in IV of yo, ¥
respectively. Then y' = . As T and I are of the same type it follows that
the subgallery of I from y; to y’ has the same type as the subgallery of T'
from yo to y. Since yo and y belong to 1 the subgallery of T from y to y
is of J-type and so the subgallery of I'' from yg to y' is also of J-type. This
implies that y' = z and y{ belong to the same J-residue which is p as z € ¢
by hypothesis.

By Theorem 5.7, yi <* yo. Also by Corollary 5.10, z¢ is the w-minimal
element of ¢ so as y§ € ¢, it follows that zo <¥ yg.

Therefore 2o <* yo and hence proj, w < projyw. (]

Corollary 5.12 ¢ <* p <=2 <" y for some z € ¢, y € 9.

Fact 5.13 (see [Ron], Theorem 2.16) Let z,w be two chambers of the
Cozeter complez W, and assume that for any chamber v € W which is adja-
cent to w,

d(z,w) > d(z,v).

Then W is finite and = is opposite w in W.

Lemma 5.14 Assume that the J-residue ¢ C W 1is finite. Let w be any
chamber in W and u the chamber tn ¢ opposite proj,w. Then z <* u for all
T € .

Proof: We shall prove that z lies on a geodesic gallery I' from w to u, then
by Lemma 5.8, z <* u.

Let I be a geodesic gallery from w to z via proj,w. Such a gallery exists
by Fact 5.9(2). Also let I' be a geodesic gallery from proj,w to u via z which
exists by Fact 5.6(2). As any sub-gallery of a geodesic gallery is also geodesic,
if we connect I to the sub-gallery of I'” from = to u we get a geodesic gallery
from w to u via z. o

The following lemma reduces in most interesting cases the study of W P-
matroids to the partial case of W-matroids.
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Lemma 5.15 Assume that the standard parabolic subgroup P is finite. If
@ € WP is a left P-coset in W, denote by maz,p the w-mazimal element of
v (it ezists by Lemma 5.14). In this notation a map

wW-ow?
is ¢ W P-matroid if and only if the map
u: W o W,

g ow = maz,u(w)

is ¢ W-matroid.

Proof: By Corollary 5.12,
w(u) <Y p(w) & mazyp(u) <¥ mazupu(w) © p'(v) <Y u'(w).

Hence p is a W P-matroid if and only if g’ is a W-matroid. o

6 W-matroids

In this section we restrict our attention to W-matroids. It is justified by
Lemma 5.15.

We shall on several occasions use the following Metric Property of W P-
matroids which is immediate from their definition: if u : W — W is a W-
matroid then

d(w, w(1)) > d(uw, 4(w))
for all u,w € W and in the case of equality u(u) = p(w).

The following result can be considered as a generalization of Fact 1.1.

Theorem 6.1 (A. Borovik and S. Roberts) Let W be a Cozeter com-
plex and p : W — W ¢ W-matroid. Assume that m, n are chambers in
M = u(W) such that the full preimages p~'[n], u~'[m] of m and n have a
common panel 7. Then m and n are symmetric in the wall o containing the
panel m. Moreover, m and p~1[m] lie on opposite sides of o.

Proof: Let u and v be two chambers in W such that u(u) =m and u(v) =n
with © and v adjacent cells whose common panel = lies on the wall ¢ say.
(1) m and n lie on different sides of 0. Suppose for contradiction that m
and n lie on the same side of o as v. Since u and v are adjacent we have by
Fact 5.1 that d(u,n) = d(v,n) £ 1. But since v and n lie on the same side of
o it follows that v and n lie on opposite sides of o so d(u,n) = d(v,n) + 1.
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Now from the metric property of W-matroids, d(u, u(u)) > d(u, u(v)), so
d(u,m) > d(u,n) and therefore d(u,m) > d(v,n)+ 1. Similarly

d(u,m) = d(v,m) +1,
so d(v,m)+1 > d(v,n)+1, which contradicts to the metric property d(v,n) >
d(v,m). Therefore m and n lie on different sides of o.

(2) o separates u from u(u) = m and separates v from p(v) = n. For
contradiction suppose that u lies on the same side of ¢ as p(u) and v lies on
the same side of ¢ as u(v). As before using Fact 5.1 and the metric property
of W-matroids

d(u,m) > d(u,n) = d(v,n) +1
and

d(v,n) > d(v,m) = d(u,m) +1
which is again a contradiction. Therefore o separates u from m and separates
v from n.

(3) m and n are symmetric in 0. As p(v) =n <¥ p(u) = m a gallery I
from u to n may be obtained by foldings of a geodesic gallery I' from u to m.
As before using Fact 5.1 and the metric property of W-matroids, we have

d(u,m) > d(u,n) = d(v,n) -1
and

d(v,n) > d(v,m) = d(u,m) — 1.
This implies d(u,m) = d{v,n) and hence

d(u,n) = d(v,m) =d(u,m) — 1 = d(v,n) — 1.

Now

span(I') < span(T') = d(u,m)
and as IV connects u to n,

span(I') > d(u,n) = d(u,m) — 1 = span(T’) — 1.

So span(I') = span(T') — 1 and I' is a geodesic gallery. This means that I”
is obtained from I' by just one folding in the panel 7. But then m and n are
symmetric in the wall o which contains =. This proves the theorem. o

The following lemma will be used in the proof of Theorem 6.3.

Lemma 6.2 Let m,n be chambers of a Cozeter complez W. Assume that m

and n are symmetric in ¢ wall 0. Let o, —o be two half-complezes bounded

by o which contain the chambers m,n respectively. Then
a={weWm<¥n}

and
—a={weW,n<"m}
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Proof: It suffices to prove that if w € o then m <¥ n. Indeed let T be a
geodesic gallery connecting w to n where w € o.. Then I' meets the wall ¢ in
some panel 7 say. Now if I is the gallery obtained from I' by folding in the
panel 7 then I connects w to m as m and n are symmetric in o. This proves
that m <% n. (]

Theorem 6.3 (A. Borovik and S. Roberts) In ¢ W-matroid p : W —
W the full preimage p~'[m)] of any m € u[W] is convez.

Proof: Let M = u[W)]. Fix m € M and define
N={ne M, y~'[m] and p'[n] have a common panel}.

If n € N, then by Theorem 6.1 the chambers m and n are separated by the
wall of symmetry of m and n, o, say. Now it follows from the definition of
a W-matroid that n <* m for any w € y~'[m] and alln € N C M. Let o,
n € N be the half-complex bounded by o, which does not contain m. Then
by Lemma 6.2,
wE ﬂ Oy
n€EN

and as w is an arbitrary chamber in p=[m],

g ml S ) on
neN

Now if 7 is any panel on d(p~![m]) it follows from the proof of Theorem 6.1
that = belongs to one of o,. But then, as for all n € N, ¢, is bounded by
o, and contains p~![m] it follows that a, is a supporting half-complex for
¢~}[m] and 7 is a supporting panel. Hence by Theorem 5.5, p~! [m] is convex.
a

Theorem 6.4 (A. Borovik and S. Roberts) Let u : W — W be a W-
matroid on an infinite Cozeter group W. Fiz an element m € u[{W). Then
the full preimage u~1[m] of the element m € p[W] is infinite.

Proof: Let {a, k € K} be the set of half-complexes supporting u~![m]. By
Theorem 6.3 = [m] is convex and by Theorem 5.5 p~![m] = Niexo. Then
Theorem 6.1 implies that m € Ngex — k.-

Now suppose that X = p~'[m] is finite. Let 2 € X be a chamber in
X at maximal distance from m. Also let {ak,k € K'} W be the set of
all half-complexes containing = but not m. Then since z € Niexoy and
m € Ngek — O,

X' = ﬂ oy C ﬂakgx.
keK' keK
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We claim that X' = Ngegrar = {z}.

Assume the contrary. Since X' is convex by Fact 5.3(1), we can find a
chamber y € X' adjacent to and distinct from z. By Fact 5.1 d(m,v) =
d(m,z) £ 1. Since d(m,y) = d(m, z) — 1 by our maximal choice of z then y
lies on a geodesic gallery from m to z. Let o be the wall containing the panel
{z,y}. Now m and y lie on on one side of this wall and z lies on another.
This is a contradiction to our choice of y.

So we have the following situation: m and z are chambers in W, {oy, k €
K'} is the set of all half-complexes containing z but not m and Niexror = {z}.
Suppose y # z is any adjacent chamber to z. Then d(m,y) = d(m,z) £ 1.
We want to prove d(m,y) < d(m, z), then by Fact 5.13 W is finite.

If y € p~'[m], then by our maximal choice of z, d(m,y) < d(m,z) and so
d(m,y) = d(m,z) — 1. So we can assume without loss that y & p~'[m]. Let
o be the wall containing the panel 7 = {z,y}, @ and —a its half-complexes
containing = and y, correspondingly. By Theorem 6.1 m lies in —a. Now by
Fact 5.3(2) d(m,y) < d(m, z). m]

Proof of the Main Theorem. Now the theorem stated in the Introduction
easily follows from Theorems 6.1, 6.3, 6.4, and Lemma 5.15.
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1 Introduction

1.1 The model: groups of Lie-Chevalley type and build-
ings

This paper is not the presentation of a completed theory but rather a report
on a search progressing as in the natural sciences in order to better under-
stand the relationship between groups and incidence geometry, in some future
sought-after theory 7. The search is based on assumptions and on wishes
some of which are time-dependent, variations being forced, in particular, by
the search itself.

A major historical reference for this subject is, needless to say, Klein’s Erlan-
gen Programme. Klein’s views were raised to a powerful theory thanks to the
geometric interpretation of the simple Lie groups due to Tits (see for instance
(12]), particularly his theory of buildings and of groups with a BN-pair (or
Tits systems). Let us briefly recall some striking features of this.

Let G be a group of Lie-Chevalley type of rank r, defined over GF(g), ¢ = p",
p prime. Let X, denote the Dynkin diagram of G. To these data corresponds a
unique thick building B(G) of rank r over the Coxeter diagram X, (assuming
we forget arrows provided by the Dynkin diagram). It turns out that B(G)
can be constructed in a uniform way for all G, from a fixed p-Sylow subgroup
U of G, its normalizer Ng(U) and the r maximal subgroups of G containing
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Ng(U).

If H is an abstract group isomorphic to a group of Lie-Chevalley type X, over
GF(q), then X, and ¢ are uniquely determined from H except for a short list
of well known cases, such as PSL(3,2) 2 PSL(2,7) 07(6,2) = U(4,2) =
Sp(4,3) = 0(5,3). Observe that in the latter example there are nevertheless
no more than two distinct buildings related to H.

A most striking and useful fact is that every thick finite building of rank r > 3
is isomorphic to some B(G) with G as above. For r < 2, characterizations
of these buildings B(G) exist assuming a flag-transitive automorphism group
together with suitable additional conditions (see Buekenhout-Van Maldeghem
[4]). The classification of all finite simple groups brings us back to a situation
which is quite similar to Tits’ starting point in the 1950’s. At that time, his
goal was to give a geometric interpretation of the five exceptional simple com-
plex Lie groups. At present, the sporadic groups and the alternating groups
are playing the role of exceptions.

1.2 Rules of experimentation

The expected outcome of a future theory T is to define a class C(t) of finite
groups, at some time ¢ and, for each group G € C(t), a class of geometries
I'(G, t) that would satisfy (at least) the following wishes.
(W1) Every finite almost simple group is in C(t). Recall that G is almost
simple if there is a simple nonabelian group S such that S < G < Aut §.
(W2) Every finite group of Lie-Chevalley type is in C(¢t). This includes groups
of rank one. This wish does not add very much to (W1): only Sym (4), Alt
(4), Sym (3).
(W3)H G € C(t) and T € T(G, t) then I is a geometry, I is firm (each residue
of rank one has at least two elements), I' is residually connected and G is a
flag-transitive type preserving automorphism group of I'.
Here and at other places of the paper we refer to Buekenhout [3] (chapter 3)
for the terminology used without explicit definitions.
(W4) If G is of Lie-Chevalley type and B(G) is the corresponding building
geometry then B(G) € I'(G,t).
(W5 If G e C(t), T € I'(G,t) and Fis aflag of ', then the residue geometry
I'r must be in I'(H,t) where H is the group induced on I'r by the stabilizer
of Fin G.
(W6) For each G € C(t), the class I'(G,t) must be a “reasonably small”
nonempty set that we can classify up to isomorphism.

We could consider these wishes as a set of axioms if (W6) was not present.
It is conceivable that there are several solutions satisfying (W1) to (W6). As
a matter of fact, more wishes can be added if the present ones are satisfied
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already. Also, we cannot be sure that the problem has a solution. Optimism
relies on 1.1. If we drop (W1) and if C(t) consists only of the groups in (W2)
then a solution is to choose the buildings in order to define I'(G,t) and then
I'(G,t) contains at most two members for all G, which is a good answer to
(W6).

1.3 Some good candidates

At this time our knowledge of geometries for sporadic groups rests on lots of
data that we have been collecting since 1975 on the basis of work involving
many authors. For some time, it was hoped that the restriction to geometries
defined over a Coxeter diagram could be a reasonable approach. A remarkable
theory grew from the efforts of Timmesfeld and of several colleagues (see
Meixner [11] for a survey). However, that theory does not include most of the
sporadic groups.

Being forced to consider at least somewhat more general diagrams, a good
supply of examples indicates that we should allow at the very least rank 2
residues over the diagrams that follow.

C P

o} O o, O
circle Petersen

We refer to [3] (chapter 22 by Buekenhout and Pasini) for a survey of classi-
fications that rely on these diagrams. Actually there is evidence in favor of
other rank 2 residues (like the tilda geometry which is a 3-cover of a general-
ized quadrangle).

Allowing the entrance of “circle” and “Petersen” means at once that standard
properties of Lie-Chevalley groups and their buildings must be given up in 7.
For instance:

1) a member of I'(G, t) need not be thick;

2)if I'is in I'(G, t), if z is an element of I and if G is the stabilizer of z in
G, then G; need not be a maximal subgroup of G.

This has dramatic consequences. How are we going to reduce the wilderness
of all subgroups of a random group G in the class C(¢)? Are we going to
consider thin geometries and to admit them without restrictions?

Another consequence of our choice and the wish of uniformity is to restrict the
rank 2 residues to quasi-generalized polygons (Buekenhout [1]). This choice
amounts to introducing primarily the linear spaces (together with the Petersen
graph and the Hoffman-Singleton graph), hence the affine spaces. Then the
door opens for the affine groups, perhaps for more primitive groups, etc.
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2 Conditions at time t; = 1991

2.1 The groups

We require that C(t,) satisfies (W1), (W2) and we furthermore allow for all
groups isomorphic to a primitive permutation group of affine type.

2.2 The geometries

For G in C(tp) and I' € I'(G, to) we require the following conditions:

(FT) G acts as a flag-transitive type-preserving automorphism group of T
We do not assume that the action is faithful;

(F) T is firm;

(RC) T is residually connected.

2.3 Experimentation

Experimentation with small groups G in C(%s), using CAYLEY [7] in order
to find all T' of rank > 3 satisfying the above conditions, shows that their
number tends to grow rather wildly and that (W6) is unlikely to be satisfied
with such weak hypotheses.

However, these conditions lead to algorithms and to a possible, though modest,
implementation on CAYLEY.

2.4 The Tits algorithms

Let X be a geometry in I'(G, 15) and let n be the rank of I". Hence G < Aut X
and G acts transitively on the chambers of X. Fix a chamber cy,...,c, of
X where ¢; is an element of type i. Let G; be the stabilizer of ¢ in G,
t =1,...,n. Then the structure of X can be entirely described in terms of
G and the subgroups G;, i = 1,...,n. First, the elements of X of type ¢
can be identified with the left cosets of the subgroups G; in G. Next, two
elements are incident if and only if the corresponding cosets have a nonempty
intersection in G. Finally, G acts on the elements by left translation.
Therefore, the process can be reversed. No longer do we start with a geometry.
We start with a group G and a collection G, ...,Gy of subgroups. Then we
define an incidence structure X(G; Gy,...,Gy) in the obvious way. Necessary
and sufficient conditions on the GG; are known in order to ensure that conditions
(FT), (F) and (RC) hold.

The isomorphism problem essentially reduces to conjugacy under G (actually
under Aut G).

In Brussels, an efficient CAYLEY-library has been developed by Hermand [9]
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in order to automate this search of all geometries for a given group G. This
was then greatly modified and further developed by Dehon [8]. These systems
have been used effectively by their authors and by some students.

2.5 The wilderness

All geometries with (FT), (F), (RC) have explicitly been listed for small groups
such as Al#(5), Sym(5), PGL(2,7). In view of the complexity of the algo-
rithms a group such as My, is presently out of reach. Actually, there is no
need to pursue this. For PGL(2,7), hundreds of distinct non-isomorphic ge-
ometries were obtained. This is too much for (W6).

2.6 Maximal subgroups only

Let us consider an additional condition.

(PRI) Every subgroup G; is maximal in G. This amounts to saying that G
acts primitively on the elements of each given type in the geometry.

Of course, this may appear as a somewhat desperate move in view of obser-
vation 2) in 1.3 but in this game, we are not forced to respect all parts of 1.3
forever. Moreover, (PRI) may provide some better insight. In view of (W5)
we also know that ultimately (for ¢ = oo) condition (PRI) if made official
should actually become “Residually PRI” and hence hold on all residues.

A search along such lines, for amalgams rather than geometries, was made by
Kommissartchik-Tsaranov [10], for the simple group U(4,2). An independent
search was made by Dehon (8] for the group Aut U(4,2). For the ranks 3, 4,
5, 6, > 7 Dehon obtained respectively 77, 87, 20, 4, 0 geometries. The sys-
tem has been applied over the last years to various groups such as AGL(2,q),
g = 3,4,5, AGL(3,2), PSL(2,q) < G < PI'L(2,q), ¢ = 5,7,8,9,11 with
rather similar results. For the Mathieu group M;,, the number of geometries
of rank 3,4, > 5 is respectively 78, 30, 0.

2.7 Restrictions that fail

The lists of geometries arising from the preceding experiments call for some
restrictions. Here are some attempted restrictions that fail to rule out a “sat-
isfactory” number of geometries.

(1) A connected diagram.

(2) The geometry is not a proper truncation of a geometry of higher rank in
I'(G, to).

For this restriction, with G = Aut U(4,2), Dehon still obtained 2, 41, 15, 4,
0 geometries in ranks 3,4,5,6, > 7 respectively.
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3 Conditions at time ¢t,=1992

3.1. We take C(t;) = C(to) and require first of all (FT), (F), (RC) and
(PRI).

3.2. Observing the long lists of geometries thus obtained we notice the dom-
inant presence of rank 2 residues having gonality 2 without being generalized
digons. This leads to an interesting restriction which amounts to requiring
that any two points are incident with at most one line in every rank 2 residue
other than a generalized digon. Let us call this condition (LL) (as in Tits
[13]) or (IP); for the “rank 2 intersection property”.

Hence we add (LL) to our conditions at ¢ = ¢;.

3.3. The case of Aut U(4,2)

Applying these rules to Dehon’s lists for Aut U(4,2) under the additional
condition (2) of 2.7 gives us respectively 0,0,1,4,0 geometries of rank 3,4,5,6,>
7, which is encouraging. Of course, the full experiment ought to be done
without condition (2). We believe that the outcome would be the same. Let
us observe for the sake of completeness that there are 5 rank one and 5 rank two
geometries. The latter are the two expected buildings and three generalized
digons.

We must say also that some other smaller groups do not provide such a short
list. Should this observation incline us to optimism or to pessimism?

3.4. The case of M,

With G = M, the number of geometries with (FT), (F), (RC), (PRI), (IP),
of rank 1,2,3,4,> 5 is respectively 5,8,10,10,0.

As a side benefit, several previously unknown good-looking geometries have
been unearthed.

If we want only thick geometries, the above numbers go down to 5,6,5,5,0. If
we drop the condition (IP)2, more than a hundred geometries arise.

4 More subgroups

4.1. As mentioned earlier, (PRI) is too strong if we intend to require it also
on all residues and if we want to admit rank 2 residues such as circles, the
Petersen graph and affine planes. Such examples made me think already in
1984 [2] that it may be interesting to replace (PRI) by:

(QPRI) all G; are quasi-maximal subgroups of G, which means that there is
a unique chain of overgroups from G; to G.
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4.2. Applying (FT), (F), (RC), (QPRI) and (IP), to the groups AGL(2,2),
AGL(2,3), AGL(2,4) and AGL(2,5) in joint work with M.Dehon and I.De
Schutter, we found out that the number of geometries of rank at least 3 is
respectively 3,15,13,11, which is quite encouraging.

Coming back to G = Aut U(4,2) of order 51840, it has 5 conjugacy classes
of maximal subgroups and, to my surprise, 32 more classes of quasimaximal
subgroups were found by Dehon. These data are too large to be treated on
our CAYLEY system.

4.3. A side benefit of the preceding study is that the lists of geometries
of rank 3 obtained with G = AGL(2,q), ¢ = 2,3,4,5, has shown us new
extensions of generalized quadrangles. These have been generalized to an
unexpected extent in purely theoretical terms [6]. Similar benefits are likely
to occur from the lists obtained for small groups PSL(2,q).

5 The near future

5.1. In order to take all earlier observations into account we will work with
a variation of (PRI).

(RPRI) At least one G; is maximal and this holds true in each residue.

As a consequence, all rank 1 residues are endowed with a primitive permuta-
tion group.

This condition can be implemented in the spirit of the preceding experiments
but it can also be pushed further in purely theoretical terms.

5.2. We shall keep an eye on another fairly natural condition, namely that
the rank 1 residues be equipped with a split BN-pair.

5.3. Special attention has to be paid also to the new rank 2 geometries that
have appeared in the above experiments. We now have a collection of more
than thirty “exotic” (g,dp,d¢)-gons with 3 < g < dy, —1, 9 < d; — 1. These
have to be analyzed in depth with the help of CAYLEY and they need to be
compared with the ideas in [5].

5.4. The present work has some influence on another front of the research,
namely the study and classification of all flag-transitive geometries over spe-
cific diagrams. Experimentation provides examples or an absence of examples
and so it gives insight on the paths to take.
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5.5. On those fronts rather strong developments may be predicted for the
coming years.
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Groups acting simply transitively
on the vertices of a building of type A,

Donald I. Cartwright!

Abstract. If a group I' acts simply transitively on the vertices of
a thick building of type A,, I' must have a presentation of a simple
type. In the case n = 1, when A is a tree, the possible groups I' are
well understood. Recently, the case n = 2 was studied ([1], [2]). We
now consider the case n > 3, and are lead to combinatorial objects 7
which we call A,,-triangle presentations. Associated to any A,-triangle
presentation 7 there is a group I'7. We show that the Cayley graph
of any group I'z is the 1-skeleton of a building A7 of type A,. For
n = 3 and n = 4, and for any prime power ¢, we exhibit an A,-triangle
presentations 7, and an embedding of I'7 into PGL(n+1,F¢(X)). In
these cases, the building A7 is isomorphic to the building associated
to SL(n + 1,F4((X))).

§1. Introduction.

It was shown in [1] that if A is an affine building with connected diagram,
and if there is a group I' of automorphisms of A acting transitively on
the set Va of vertices of A, then the diagram of A must be A, for some
n > 1. Now let A be a thick building of type A,. Let I' be a group of
automorphisms of A which acts simply transitively on Va. The case n =1
is well understood (see [3] or [6]), and the case n = 2 was studied in [1] and
[2], and so we shall be mainly concerned with the case n > 3 in this paper.

Let dy(u,v) denote the natural graph distance on Va. As we saw in [1],
if we fix a vertex vy of A, and if we let II(vg) = {v € Va : dy(ve,v) = 1}
be the set of vertices in the residue of vg, then for each v € II(vg), there is
a unique g, € I' such that g,vo = v. Moreover, if v € II(vo), then g, v, is
in II(vo) too, and A(v) = g, 'vo defines an involution A : II(ve) — II(ve) such
that gxv) = g,'. We also saw [1, Proposition 2.2] that if T = {(u,v,w) €
I(vo)® : gugvgw = 1}, then the set {gy, : v € II(vo)}, together with the
relations gogxv) = 1, v € II(v), and gugugw = 1, (v,v,w) € T, give a
presentation of T'.

There is a type map 7: Va — {0,1,...,n} such that each chamber of A
contains one vertex of each type. We may assume that vy has type 0.

1 School of Mathematics and Statistics, University of Sydney, N.S.W. 2006, Australia.
1991 Mathematics Subject Classification. Primary 20G25, 51E24. Secondary 20F05,
51E15.

Key words and phrases. Affine buildings, local fields.
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Now II(vg) has a natural incidence structure: if u,v € II(vo) are distinct,
we call v and v incident if u, v and vo lie on a common chamber of A.
When n = 2, II(vs) is a projective plane, the vertices of type 1 being
the “points”, and the vertices of type 2 being the “lines” (or vice versa).
When n > 3, II(v) is a projective geometry (see [9, p. 105] or [5, p. 24],
for example), and therefore isomorphic ([9, p. 203] or [5, pp. 27-28]) to
the projective geometry II(V), the flag complex of an n + 1 dimensional
vector space V over a not necessarily commutative field k. Also, the type
map 7 can be chosen so that the type 7(z.) of the vertex z, € II(vo)
corresponding to u C V is just dim(u). When n > 3, any thick building
of type A, is isomorphic to the building A,,(K v) associated with a not
necessarily commutative field K with a discrete valuation v (see [8, §9.2
and Theorem 10.22]), but we shall not be really using this here. When
A= Z,:(K,v), an isomorphism II(vg) — II(V) is apparent: if vo is the
lattice class [Lo), then II(vg) consists of the classes [L] of lattices L satisfying
Lo‘rrgL;CtLo, where 7 € K and v(r) = 1, and we can associate to [L] € II(vo)
the subspace L/Lom of V = Lo/Len (which is an n + 1-dimensional vector
space over the residual field k of K). For g € GL(n + 1, K), we set 7([g L))
equal to the i € {0,1,...,n} satisfying i = —v(det(g)) (mod n + 1), and
then 7([L]) equals the dimension of L/Lon over k for each [L] € II(vo).

An automorphism g of A is called type-rotating if there is an integer ¢
such that 7(gz) = 7(z) + ¢ (mod n + 1) for each vertex z of A. Such
automorphisms form a subgroup Aut(A) of index at most 2 in Aut(A), and
g+— cmod n + 1 is a homomorphism Aut(A) = Z/(n + 1)Z. When A =
Z:,(K ,v), any ¢ € PGL(n + 1, K) induces a type-rotating automorphism
of A. We shall always assume that our group T is a subgroup of Aut,;(A).

In the next section, given any projective geometry II of dimension n, and
any involution A : I — II such that dim(A(v)) = n + 1 — dim(u) for each
u € II, we define an Z,:-tn'angle presentation T compatible with A. We
associate to 7 a group I'r, generated by elements a,, u € II, and show that
the Cayley graph of I'r with respect to these generators is the 1-skeleton
of a thick building A7 of type A, on the vertices of which I'7 acts simply
transitively. When n > 3, A7 must be isomorphic to A,(K,v) for some
field K with a discrete valuation v, but it is not apparent what K should
be, except that the order ¢ of the re51dua1 field of K must be the order of II.
When n = 2, A7 may be isomorphic to 4;(K,v). In [2], by enumerating
all Az- triangle presentations when ¢ = 2 and ¢ = 3, we saw that for those
cases, only K = F ((X)) and K = Q, could occur (assuming that K is
complete with respect to v, as we may [8, p. 130]), and that when ¢ = 3,
some A7 are not isomorphic to any 4;(K,v).

In the subsequent sections, .Z;-tria.ngle presentations 7 are exhibited for
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n =3 and n =4, and any prime power g. Let us briefly indicate how these
were found. Suppose that V = F 4, where d = n + 1. Then F:d acts on

II(V) by multiplication. In [1], when n = 2, all Z:.-triangle presentations 7
were found satisfying the further property

(u,v,w) €T, t€FL = (tu,tv,tw) €T (1.1)
Each such T was found to also satisfy

(wo,w) €T = (p(u),0(v),p(w) € T (1.2)

where ¢ : z — 27 is the Frobenius automorphism of F . Moreover, for

each prime power ¢, an Z;-tria.ngle presentation 7y was exhibited such that
I'7, embeds as a subgroup of PGL(3,F,(X)) acting simply transitively on
the vertices of Z;(F.,(X),v) (or of Z;(F.,((X)),v)).

In this paper, forn = 3andn =4, Z:.-triangle presentations 7 were found
satisfying (1.1) and (1.2), and an embedding of I'r into PGL(n +1,F,(X))
was found in both cases. It remains an open question whether I,-tria.ngle
presentations exist for each integer n > 2.

—

§2. A,-triangle presentations 7, and the associated groups I'r and
buildings A7r.

Let A be a thick building of type .717, We fix vy € Va. As discussed in the
introduction, we may assume that 7(vg) = 0, and that (when n > 3) there is
an isomorphism of II(vg ) onto II(V'), the flag complex of an n+1 dimensional
vector space V over a not necessarily commutative field k, so that the type
7(v) of v € II(vo) equals the dimension the corresponding subspace of V.
For v € II(vg), we shall write dim(v) in place of 7(v), even if n = 2. We
shall write u C v if u,v € II(vp) are incident and dim(u) < dim(v).

Lemma 2.1. Assume that I' < Aut(A) acts simply transitively on the
set Va of vertices of A. Then the involution A : II(ve) — II(vo) defined
above (recall that M(v) = g;'vo, where g, € T and gyv9 = v) satisfies
dim(A(u)) = n + 1 — dim(u) for each u € II.

Proof. If u € II(vo) and dim(u) = ¢ € {1,2,...,n}, then 7(vg) +i =i =
7(u) = 7(guve). Hence 7(guv) = 7(v) +1 (mod n + 1) for every v € Va,
because g, is type-rotating. Thus 7(g;'v) = 7(v)—1 (mod n+1) for every v,
and so, in particular, dim(A(v)) = 7(g7've) = T(vo) —t = -t =n+1—1
mod n + 1.

Let T be the set of triples (u,v,w), u,v,w € II(vy), associated to I' <

Auti(A) as described in the introduction: 7 = {(u,v,w) € II(vo)® :
Jugvgw = 1}. Then, writing II in place of II(ve),
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(A) given u,v € II, then (u,v,w) € T for some w € II if and only if A(u)
and v are distinct and incident;

(B) if (u,v,w) € T, then (v,w,u) € T;

(C) if (u,v,w1) € T and (u,v,wz) € T, then wy = wy;

(D) if (u,v,w) € T, then (AMw), A(v), A(u)) € T;

(E) if (u,v,w) € T, then dim(u) + dim(v) + dim(w) = 0 mod n + 1.

Indeed, properties (A)-(C) were derived in [1]. Property (D) is immediate
from the fact that gy,) = g;*. As for (E), let the types of u, v and w be i,
7 and k, respectively. Then 7(g,z) = 7(z) + ¢ mod n + 1 for every vertex z,
and similarly for g, and g,. Hence 0 = 7(vg) = 7(gugvguwvo) = i +j +k
mod n + 1.

Notice that if (u,v,w) € T and (dim(u), dim(v), dim(w)) = (4, 4, k), then
i+j+kiseithern+1lor2(n+1). If v C Au), then j < n+1—7y,
andsoi+ j+ %k = n+ 1 must hold (and w C Av) and v C Aw)). If
v D Mu), then j >n+1—1¢,and so i+ j+ k = 2(n + 1) must hold (and
w D A(v) and v D Aw)). Let us denote by T, respectively T", the set
of triples (u,v,w) € T such that dim(u) + dim(v) + dim(w) equals n + 1,
respectively 2(n + 1). Axiom (D) shows that (u,v,w) — (A(w), A(v), A(u))
is an involution of 7, interchanging the two subsets 7' and 7". Notice the
following further property:

(F) if (u,v,w) € T", and (u,v’',w’') € T’ then there is an z € II such that

(A(v),v',z) € T' and (w, A(w'),z) € T".
To see this, just notice that v’ C A(u) C v. Hence (A(v),v',z) € T’ for some
z € I, by Property (A). Also, AM(w) C u C Mw'), and so (w, A(w'),z') € T
for some z' € II, again by Property (A). Thus g\(»)9v'9: =1 = gwgar(w’) 9z’
But also g,9vgw = 1 = gugv guw. Thus gugw = g gu’, and so gx(y)gw =
Juwdr(w)- Hence g, = g, so that z = 2.

We are led to the following definition:

Definition. Let II be any projective geometry of dimension n > 2. For
i=1,...,n,let II; = {u € Il : dim(u) = ¢}. Let X : II — II be an invo-
lution such that A(Il;)) = II,4,—; for each i. An E,-triangle presentation
computible with X is a set T of triples (u,v,w), where u,v,w € II, satisfying
properties (A)—(F) above.

When n = 2, the possible triples (dim(u), dim(v), dim(w)), (uv,v,w) € T,
are just (1,1,1) and (2,2, 2). So Axiom (F) holds vacuously. There is a slight
difference between the above definition in the case n = 2 and the definition
of (A2-)triangle presentation given in [1]). There, a triangle presentation is
half of what we are now calling a triangle presentation; it is just what we
are denoting 7" here.
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In view of property (D), an Z,:-tria.ngle presentation is completely deter-
mined by 7. Moreover, property (F) can be stated purely in terms of 7

(F") if (z,y,u) € T' and (2',y', M(u)) € T', then for some w € II we have
(y',z,w) € T' and (y,2',A(w)) € T'.

So we could have defined an .Z;-triangle presentation to be an object like 7.
This corresponds to the definition in [1], but seems less natural here.

In general, the possible triples (dim(u), dim(v), dim(w)), (uv,v,w) € T',
are just the possible partitions of n + 1 into three positive integers. For
example, if n = 3, the possible triples are just (1,1,2) and its cyclic permu-
tations, while if n = 4, the possibilities are (1,1,3) and (1,2,2), and their
cyclic permutations.

An example will be given below of a set T of triples, where n = 3,
satisfying (A)-(E), but not (F).

Given an Z:,-triangle presentation 7, we can form the associated group
I'r with a generating set indexed by II:

I'r= ({av}vel'l | (1) Ar(w) = a;l forallvell
(2) awayay, =1 for all (u,v,w) € T).

The notation of the next theorem assumes that II = II(V) of an n + 1
dimensional vector space V over a field k. However, the statement and
the proof of the theorem are valid for an arbitrary n-dimensional projective
geometry II, provided that we interpret “A(u;) + u;4+1 = V” as meaning
“there is no v € II such that A(u;) C v and u;4; C v”. In particular, the
statement and proof generalize those of Proposition 3.2 in [1].

Theorem 2.2. Let T be an Z;-triangle presentation, and let £ € T'y. Then
we can write

{ = 0y, Ay, ' Ay, (2.1)
for some integer £ > 0 and for some uy,...,ur € Il such that
AMuj))+uip1 =V fori=1,...,0-1 (2.2)

(this implies that dim(u,;) < dim(uz) < -+ < dim(uy)). Moreover, this way
of writing £ asin (2.1) so that (2.2) holds is unique, and is of minimal length
amongst all words equal to .

Proof. Using the relations a;! = ay(,) for v € I, we see that any £ € I'r

is expressible as a word (2.1). To see that (2.2) can be arranged, choose a
word a,, - - - a,, equal to { with £ minimal, and with (dim(u,),...,dim(u,))
minimal for the lexicographic order. The first condition implies that u;+, #

A(u;) (otherwise we could delete a,;ay,,, from the word) and that u;y, is
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not incident with A(u;) (otherwise (u;,tiy1,w) € T would hold for some
w € II, and we could replace ay;aq,,, by ax(w), obtaining a shorter word).
The second condition now implies that (2.2) holds. Indeed, it is enough
to show that if u,v € II with v # A(u), v not incident with A(u), and
AM(u) + v # V, then we can write a,a, = au'ay, where dim(u') < dim(u)
(and dim(v') > dim(v)). To see this, we write A(u) + v = A(w) for some
w € II. Because A(u)g)\(w), by Property (A) of an A,-triangle presentation
we can find u’ € II such that (w,A(u),u') € T'. Also, v G A(w), so we
can find v' € II such that (w,v,A(v')) € T'. Then ayary)auw =1 =
Qwlyar(vr), SO that ax(u)@u = Gyaxr(v) 80d Guy = away. Now dim(w) +
dim(A(v)) + dim(u') = n + 1, so that dim(u') = dim(u) — dim(w) < dim(u),
and similarly, dim(v') = dim(v) + dim(w) > dim(v). Note that by (2.2),
n +1 = dim(A(u;) + vig1) < dim(M(w;)) + dim(ui41) = n + 1 — dim(u;) +
dim(ui41), so that dim(u;) < dim(ui4y).

The proof of the uniqueness of the word (2.1) for ¢ satisfying (2.2) is more
difficult, though quite similar to the proof of Proposition 3.2 in [1]. We
form the set W of “words” (2.1) satisfying (2.2) in the letters {a, : v € I},
writing 1 for the empty word. For each u € II, we defineamap T, : W - W
(corresponding to left multiplication by a,). Let F denote the free group on
Card(II) distinct letters gy, u € II, and let N be the normal subgroup of F
generated by guga(u), ¢ € II, and gugvgw, (¢,v,w) € T. Lemma 2.3 below
shows that each T, is a permutation of W, and that the homomorphism
¢ from F into the group of permutations of W determined by g, — T,
factors through /N = I'r. Then, as in the proof of Proposition 3.2 in [1],
gN — ©(g)(1) defines a bijection I'r — W, and the theorem is proved.

Here now are the details: We write |{| for £if ¢ € Wis asin (2.1). Now for
u € II, we define a map T, : W — W as follows: Firstly, we set T,,(1) = a,
for each u € II. Now suppose that £ > 1, and that T,(n) € W has been
defined, and satisfies |T,(n)| < |9| + 1, for each u € II and for each n € W
satisfying |n| < £. Let £ € W be as in (2.1), and let ¢’ = ay, - ay, (€ W).
We define T, (€) as follows:

() If uy = Mu), set Tu(¢) = ¢

(ii) If uy # A(u), but u; is incident with A(u), let w be the unique element
of II such that (u,u;,w) € T. We set T,,(§{) = Tx(w)(¢') (which is defined,
because [¢/| =¢—-1).

(iii) If A(uv) + vy = V (which implies that u; # A(u) and that u, is not
incident with A(u)), then ayau, - - - au, € W, and we set T,(£) equal to this
word.

If dim(u) = 1, then one of the mutually exclusive possibilities (i)~(iii) must
hold, because dim(A(u)) = n, and so T,(€) is defined. Suppose now that
1 < i < n+1, and that T,(n) has been defined, and satisfies [T, (n)| < |n|+1,
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for all u € II with dim(u) < i and for all n € W with |n| < £. Now let u € II,
with dim(u) = ¢, and let £ € W be as in (2.1). We define T, (£) exactly as
in (i)-(iii) above, except that there is now another possibility:

(iv) s # A(u), and u, is not incident with A(u), but A(u) + u; # V.
We then write A(u) + u; = A(w'). We know that (w’, A(u),u’) € T' and
(w',uy1,v") € T' for unique v’, v’ € II. Also, (see the beginning of this proof),
dim(u') = dim(u) — dim(w') < dim(u). We set Tu(§) = Tu (Tawn(¢'))
(which is defined because |¢'| < £, |T(»)(¢')| < £ and dim(u') < i).
Lemma 2.3, Let £ € W. Then

(@) Tu(Taqu)(£)) = & for all w € I1;

(b) Tu (Tv(g)) = TA(w)(E) if (u7 v, w) € T;

(c) TA(,,)(T,,:(ﬁ)) = T,,(TA(,,:)(E)) if (s,u,v) € T and (s,u’,v') € T for

some s € II.

Proof. Let us denote by (a) assertion (a) in the case when [¢| = ¢, and
similarly for (b¢) and (c¢). We prove assertions (a¢)—(c¢) by induction on £.
The proof is divided into several steps.

STEP 1: £=0. Now (ag) and (bo) are trivial to verify, but for (co), there
are four cases to check.

1. If (s,u,v) € T" and (s,u’,v') € T', then by Axiom (F) of an A,-triangle
presentation, there exists a unique z € II such that (A(u),u’,z) € T’ and
(v, A(v'"),z) € T". Thus (by part (ii) of the above definition)

Tagu) (Twr (1)) = Tagwy(aw) = Tae)(1) = To(anew)) = To(Trwy(1))-

2. If (s,u,v) € T' and (s,u',v') € T", then (A(s), A(v),A(u)) € T" and
(A(s), AM(v'), A(u')) € T', and this case reduces to Case 1.

3. If (s,u,v) € T' and (s, u’,v’) € T', then we must compare T, (Tur(1)) =
Tau)(aw) and T, (Tr(»)(1)) = Tu(ax(y)). We consider the four cases of the
definition of the first of these.

(i). w' = u. Then v = ' by Axiom (C), and Ty(,)(Tw (1)) = 1 =
Ty (T (1)).

(i1). u’ # u, but v’ is incident with u. Then (A(u),u’,w) € T for some w €
IT, and Tx(u)(au) = ax(w)- If (A(u),u',w) € T', then (u, A(w), A(u')) € T,
(u,v,8) € T' and Axiom (F) imply that (w,v,z) € T’ and (A(u'), A(s), z)
€ T" for some z € II. The second of these shows that x must be A(v'), while
the first one now implies that T, (ax(vy) = @x(w) too. If (A(u),u',w) € T",
however, then (u',w, A(u)) € T", (u',v',s) € T' and Axiom (F) show that
(AM(w),v',z) € T' and (A(u), A(s),z) € T" for some z. This time z must
be /\(’U), and again Tv (a)\(,,f)) = Ax(w)-
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(iii). v+ v’ = V. This cannot happen here, because u,u’ C A(s) by the
hypothesis of Case 3.

(iv). v’ # u, u' is not incident with u, and u + u’ # V. Write u +u’ = A(3).
Then (5,u,%) € T’ and (3,u',9') € T’ for some ,9' € II, and (by part (iv)
of the above definition)

Do) (Tw (1) = Taw(aw) = Te(Tan(1))- (23)
Now u,u’ C A(s), and so A(s) =u+u' C As). If A(S) = A(s), then
§ = s,and so ¥ = v and %' = ¢/, and we are done. If A(3) # A(s),

then (s, A(3),y) € T' for some y. Now (3, A(s),\y)) € T, (5,u,%) € T'
and Axiom (F) imply that (A(y), A(¥),v) € T", so that (y, A\(v),?) € T".
Similarly (y, AM(v'),9') € T'. If (¢o) were to fail in Case 3, we could choose
(s,u,v) € T' and (s,u',v') € T’ with Th(w)(Tw (1)) # To(Th(v)(1)) and
dim(u) as large as possible. Now (y, A(v),%) € T’ and (y, A(v'),?’) € T',
and (because (s,u,v) € T') dim(A(v)) > dim(u). Thus

To (T (1)) = T5(Taen (1)) (24)

Comparing (2.3) and (2.4), we see that the proof of Case 3(iv) is complete.
4. If (s,u,v) € T" and (s,u',v') € T", then (A(s), A(v), A(u)) € T’ and
(A(s), A(v"), M(u')) € T', and this case reduces to Case 3.

We now assume that £ > 1, and that (as—;), (be—1) and (c¢—~1) have been
proved. Let ¢ be as in (2.1), and let ¢’ = ay, - - ay,, as before.

STEP 2: We next prove (b) in the case (u,v,w) € T'. We shall denote this
case (by) below. We consider the four cases of the definition of T, (¢):

(1). If uy = A(v), then T,(¢) = ¢'. So

T.(T.(8)) = Tu(¢) = Taqw) (Taw)(£)) = Taw) (Tui (€)) = Taqw)($),

where the equation marked 1 holds by (b¢—,), because (A(w), A(v), AM(u)) €
T.

(ii). If uy # A(v), but u, is incident with A(v), then (v,u;,w;) € T for some
wy € II, and T,(€) = Ta(w,)(¢'), by definition. Thus
Tu(T0(8) = Tu(Tawn(€)) = Taguy (Tus (€)) = Taw)(9),

where for the equation marked 1, we have used the fact that (v, w,u) € T,
(v,ur,w1) € T and (¢g—).
(iii). If A(v) + uy =V, then

Tu (Tv(E)) = Tu(avau1 to au[) = TA(w)(aul tte au[) = TA(w)(E)
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(iv). If uy # A(v), uy is not incident with A(v), and A(v) + uy # V,
write A(v) + u3 = Mw;). Then (wy, A(v),v'),(w1,w1,u)) € T’ for some
v',uf € II, and T, (§) = T (TA(u;)(il)), by definition. If (b)) were to fail,
we could choose (u,v,w) € T' and £ € W with [¢] = ¢, T.(Tu(¢)) #
T\(w)(€) and dim(v) as small as possible. Knowing that (A(v), A(u), M(w)) €
T" and (A(v),v',w1) € T', Axiom (F) implies that (u,v',z) € 7' and
(M(w), Mw),z) € T" for some z € I. Thus T, (T,(¢)) equals

T (T (Taguy)(€))) = Tag) (Tacu)(€)) 2 Tauy (Tus (€)) = Tagu)(),

where the equation marked 1 holds because (u,v’,z) € 7' and dim(v') <
dim(v), and the equation marked 2 holds because (A(w),z,A(w)),
(AM(wn), Mu}), M(v1)) € T and (e¢—1) holds. Thus (b}) is proved.

STEP 3: We next prove (a¢). We consider the four cases of the definition
of Thu)(§):
(1). If uy = u, then using part (iii) of the definition of T,

Tu(Taw)(8)) = Tu(é) =&

(ii). If uy # u, but u, is incident with u, then (A(u),u,,v) € T for some
v € II, and T)\(,‘)(E) = T)\(v)(E'), by definition. Thus

Tu(Taw)(€)) = Tu(Taw)(€) = Tu,(€') =€,

where the equation marked 1 holds by (b¢—;) because (u, A(v), A(u1)) € T.

(iii). If uy # u, u; is not incident with u, and u + u; = V, then using
part (i) of the definition of Ty,

T. (TA(u)(E)) = Tu(a)\(u)aiu e aut) =¢.

(iv). Finally, if u; # u, u; is not incident with u, and u + u; # V, write
u + u; = A(v). Then (v,u,w),(v,u;,w;) € T’ for some w,w; € II. Then
Ta(u)(€) = Tw (Th(wy)(¢')) by definition, and

1 2
Tu(Ta@)(©)) = Tu(To(Tawn(€))) = Tage)(Tawn (€)) = Tui(§) =,
where the equation marked 1 holds by (}) because (v, w,v) € T', and the
equation marked 2 holds by (b,—,) because (A(v), A(wy), A(uy)) € T.

STEP 4: We next prove (c¢) in the case (s,u,v),(s,u’,v') € T'. We shall
denote this case (c}) below.
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If (¢j) were to fail, we could choose (s,u,v),(s,u’,v') € T' and £ € W
with [¢] = € and Th(u)(Tw(€)) # To(Trw)(€)) and dim(u) as large as
possible. Amongst such possible data with dim(«) maximal, we could choose
(s,u,v),(s,u',v') € T' with dim(u') minimal. We know that (s,u,v) #
(s,u’,v"), as otherwise (a¢) would give Ta(u)(Tw(£)) =& = To(Trv)(£)).

We consider the four cases of the definition of Ty/(£), in each case arriving
at a contradiction to the above hypotheses:

1. If u; = A(u'), then (A(v'),u1, A(s)) € T", and so Ty(»y(£) = T,(¢') by
definition. Thus

Ty (Tagwn (€)) = To(T(€)) = Tagy(€) = Taew) (Trwn(©)) = Taw)(Twr (£)),

where the equation marked 1 holds by (be—y) because (v,s,u) € 7.

2. If uy # M), but u, is incident with A(u’). Then (u',u;,w) € T for
some w € II. Thus Ty, (T.,:({)) = TA(,,)(TA(",)(E’)), by definition. Hence

T, (Ta)(6)) = To(Tae)(Tui(€))) =T, (To(Taw)(€)))
Z Ty (Taw)(€") = Tagw)(Tw (6)),

where the equation marked 1 holds by (¢¢~1) because (u', v, s), (v, u1,w) €
T, and the equation marked 2 holds by (b}) because (v,s,u) € T".

3. If M(u")+uy =V, we have T/ () = ay @y, - - - ay,. We must now consider
the four cases of the definition of T)(y)(au @y, - - - @y, ).

(3.1). The first case, u’ = u, is not allowed, as (s,u,v) # (s,u',v").

(3.2). If v’ # u, but v’ is incident with u, then (A(u),v’',w) € T for some
w € II, and Ty(u)(@ur @y, - - - @y, ) = Tr(w)(§), by definition.

Suppose first that (Mu),v',w) € T'. This, (A(u), A(s),A(v)) € T" and
Axiom (F) imply that (A(v), M(w),v’) € T". Thus Ty (Th(vy(€)) = Ta(w)(€)
by (), as (v, A(v'),w) & T".

So suppose that (A(u),u’',w) € T". This, (u',v',s) € T' and Axiom (F)
now imply that (A(w),v’,A(v)) € T'. We must now consider four subcases
according to the four cases of the definition of T(y)(§).

(3.2.1). The case u; = v’ is excluded. For, because (s,u',v') € T, it would
imply that w; is incident with A(u'), contrary to the hypothesis of Case (3).
(3.2.2). If u; # ¢, but u; is incident with v, then (A(v'),u1,w1) € T for
some wj, and Ty(y)(€) = Th(w,)(¢') by definition. Thus

Ty(Ta@n(©)) = To(Taun(€)) = Taw (Tur (€))
= T,\(w)(ﬁ) = TA(u)(T“’(O)’
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where the equation marked 1 holds because (A(v'), w,v), (A(v'),uy,w1) € T,
by (c¢-1), and the last equation is valid for the case (3.2).

(3.2.3). If uy # v, u; is not incident with v', and v' + u; =V, then

Ty (Taw(€)) = To(aa(v)@u, * - Guy) = T (w)(Qu, ** - au,) = Tau)(Tw (£)),

where the equation marked 1 holds by definition of T, because (v, A(v'),w) €
T.

(3.24). If uy # v', uy is not incident with v’, and o' + u; # V, write
v’ + u; = A(w'). Then (w',v,2),(w’,u1,2') € T’ for some 2,2’ € II, and
T\)(€) = T, (Tx(:(¢')) by definition. Thus

Ty (Tawy(8)) = To(Te (Tag)(€))) = Taguwy (Tagury (Tae (€)))
£ Ty (Tur (€)) = Taqu)(€) = Tagu) (Twr ().

Here the equation marked 1 holds because (v', A(v), M(w)), (v', z,w') € T'
and dim(A(v)) > dim(u) (as (s,u,v) € T'), by the hypotheses made at
the beginning of Step 4. The equation marked 2 holds by (b¢—,), because
(M), A(), M) € T.
(8.3). The case u+u’ =V cannot happen here, because (s,u,v),(s,u’,v’) €
T' implies that u,u’ C A(s).
(3.4). If v’ # u, u' is not incident with u, and u + u' # V, the proof is
exactly as in Case 3(iv) of Step 1, except that we replace the 1 there by ¢£.
This completes the proof in Case 3 of Step 4.
4. If uy # A(u'), u, is not incident with A(u'), and A(u') + uy # V, write
Au')+uy = A(s'). Then (s', A(u'), 2),(s',u1,2") € T' for some z, 2 € II, and
T (&) = T.(Tr()(¢')) by definition. Now (u', A(s'), A(2)) € T, (uv',v',5) €
T' and Axiom (F) imply that (s’,v',z) € 7' and (A(2),A(s),z) € T" for
some z € II. Thus because (s,u,v),(s, z,A(z)) € T', dim(z) < dim(u') and
the hypotheses made at the beginning of Step 4, we have

D) (T=(Taen (€))) = To (T2 (Ta (£1))

Now by (ce-1), (8',v,z),(s',u1,2') € T implies that T, (Ty(¢')) =
Ty (Tui(€)) = Taw)(€). Combining the above facts, we obtain
Taqu) (Tur(€)) = Ty (Tav)(£)) again, and Step 4 is complete.
STEP 5: We next complete the proof of (b¢), proving it for the case when
(u,v,w) € T".

The proof follows exactly as for the case when (u,v,w) € T’ dealt with
in Step 2 until we get to the fourth case of the definition of T,(¢). Suppose
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then that u, # A(v), v, is not incident with A(v), and A(v) + vy # V, and
write A(v) + u; = A(w;). Then (wy, A(v),v'),(w1,u1,u}) € T’ for some
v',ui €11, and Ty,(§) = T (TA(u;)(il)), by definition. Then

Tu(Tu(€)) = Tu(To (Taupp(€))) = Taw) (Tacun (Trp (€)))
£ Ty 0y (T (€) = Tau)(8),

where the equation marked 1 holds by (¢}), because (A(v), A(u), M(w)),
(A(v),v',wy) € T', and the equation marked 2 holds by (be—1), because
(Mw1), Muy), M) € 7.

STEP 6: The final step in the proof is to complete the proof of (¢g).

If (s,u,v),(s,u’',v') € T", then (A(s), A(v), A(u)), (A(s), A(v"), A(u')), €
T, and so Ty (Taqw)(€)) = Taqu) (Tw(€)) holds if [¢] < € because of (c}).
Suppose that (s,u,v) € 7" and (s,u’,v') € T'. Then by Axiom (F),
(Mu),u’,z) € T' and (v, A(v'),z) € T" for some z € II. Now (b) im-
plies that

Taw) (Tw(8)) = Ta@)(€) = To(Taw(£))-

Finally, if (s,u,v) € T’ and (s,u’,v') € T", then (A(s), A(v), M(u)) € T"
and (A(s), A(v'), A(v')) € T', and we are reduced to the previous case.

Lemma 2.4. With the notation as in Theorem 2.2, let u,v,w € II, and
suppose that a,ayaw =1 in 'y, Then (u,v,w) € T.

Proof. If not, choose a counterexample with dim(u) minimal. If v = A(u),
then ayay = 1, so that a, = 1, contrary to Theorem 2.2. If v and A(u) are
distinct and incident, then (u,v,z) € T for some z € II. Thus aya,a; =1
too, so that a, = aw, and hence z = w by the theorem, and we are done.
If A(u) +v =V, then a,a, = ay(,) would contradict the theorem. Finally,
if v and A(u) are distinct and not incident, with A(u) + v # V, write
Au) + v = A(s). We have (s, A(u),v'),(s,v,A(v")) € T' for some u',v’,
and ayua, can be re-written aya,. Also, dim(v') < dim(u), and so by
the choice at the beginning, we have (v',v’,w) € 7. Treating the cases
(v',v',w) € T' and (u',v',w) € T" separately, and using Axiom (F), we get
that (u,v,w) € T, contrary to hypothesis.

Theorem 2.5 Let T be any Z:,-tn'angle presentation. Then the Cayley
graph of I'r with respect to the generators a,, u € II, is the 1-skeleton of
a thick building At of type A,, on which 't acts simply transitively, as a
group of type rotating automorphisms.

Proof. The proof is very similar to that of Theorem 3.4 in [1], so we shall
be brief. We show first that I'7 is a geometry of type A, (see [10]). To
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begin with, Axiom (E) implies that there is a homomorphism (the type
map) 7 : 't — Z/(n + 1)Z such that 7(a,) = dim(u). Next, we define
an incidence relation x on I'r, calling g,¢’ € 't incident if ¢' = g or if
g’ = ga, for some u € II. Clearly, if g and g’ are incident and 7(g) = 7(g'),
then ¢ = ¢’. So (I'r,7,*) is a geometry. The associated graph is just the
Cayley graph of I'r (relative to the generators a,). This graph is connected
because the a,’s generate I'7. Theorem 2.2 implies in particular that, given
g € I'r, the vertices ga,, u € II, are distinct and different from g. The
(vertex set of the) residue of g € I'7 is {ga, : v € II}. The map u — ga,,
is an isomorphism of II onto this residue. To check this, we must verify
that if u,v € II are distinct, then ga, and ga, are incident if and only if
u,v are incident in II. If u,v are incident in II, then (A(u),v,w) € T for
some w € II. Thus a, = avaw, and so ga, = (ga,)aw is incident with ga,
in the residue of g. Conversely, if ga, = (9av)aw, then a, = ayaw, and so
(Mu),v,w) € T by Lemma 2.4. Hence u and v are incident in II.

Thus (I'r,7,%) is a geometry of type ;1: The rest of the proof follows
closely that of Theorem 3.4 in [1], and we omit it.

The next proposition (a generalization of Theorem 3.5 in [1]) is useful
when we are verifying that a homomorphism ¢ : 't — Aut.(A) is an
isomorphism onto a subgroup of Auty(A) which acts simply transitively
on Va. It is also useful for verifying that a set 7 of triples satisfying axioms
(A)-(E) of an Ap-triangle presentation also satisfies (F). We can form the
group I'7 even when (F) is not assumed.

Proposition 2.6. Let II be a projective geometry of order ¢ < oo and
dimension n > 2. Let X be an involution of II such that A(Il;) = Mpqq-i
fori =1,...,n. Let T be a family of triples (u,v,w) € II* satisfying ax-
ioms (A)-(E) of an A, -triangle presentation compatible with ), but perhaps
not axiom (F). Let A be a thick building of type .:17., and let vy € YV have
type 0. Write II;(vo) for the set of neighbours of vy having type i. Suppose
that ¥ : 't — Aut(A) is a homomorphism such that

(1) ¥(au)vo € Ii(vo) for each u € II;;
(2) u — P(ay)vo is a bijection I} — II; (vo).

Then T does satisfy axiom (F), u — t(a,)ve is an isomorphism from
II onto the residue Il(vg) of vo, ¥ is an isomorphism onto a subgroup
of Auty(A) which acts simply transitively on Va, and g — 9(g)vo is an
isomorphism of At onto A.

Proof. We first show that for ¢ = 1,...,n, u — t(a4)ve is a bijection
II; — II;(vo). Hypothesis (2) implies that the projective geometry II(vy) is
of order g. Suppose that ¢ > 1, and that for each j < ¢, u — ¥(ay)vo is a
bijection IT; — ITj(vo). Let u,u’ € II; with ¥(au)ve = P(au)ve. If u # v/,
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there exists v € II;_; such that v Cu but v ¢ u'. Then (A(u),v,w) € T for
some w € II, so that a, = aya, in I'r. Thus

d((au )0, $(av)v0) = d(1(as) ($(aw)v0), B(av)vo) = d((aw)vo, v0) = 1 |

(2.5

So 1(ay)ve is a type ¢ — 1 neighbour of ¥(a,)ve = (au)ve. But ¥(ay ve

is also a type i — 1 neighbour of ¥(ay )ve for each of the (¢* —1)/(¢ — 1)

elements v’ € II;_; such that v’ C u’. By the induction hypothesis, ¥(a, )vo

is different from each such ¥(av)vo. This is a contradiction, as ¢(au )vo
has only (¢* — 1)/(g — 1) neighbours of type i — 1. Thus u = u’.

Thus u — 1(ay)ve is a bijection IT — II(vg). If u,v € II are distinct and
incident, then (A(u),v,w) € T for some w € II, and the calculation (2.5)
shows that (a,)vo and 9(a,)ve are incident in II(v). Conversely, suppose
that ¥(a,)ve and ¥(ay)vy are incident in II(vg), where u € II; and v € I1;,
say. For each v’ € II; incident with v, we have ¥(a. )vo € II;(vo) incident
with 1(a, )ve. If v and v were not incident, then y(a, )vo would be different
from each such ¥(a. )vo, and ¥(ay)vy would have one type i neighbour too
many. So u and v are incident, and u — (au)ve is an isomorphism from
IT onto II(vo).

Next, we check that 7T satisfies axiom (F). Let (u,v,w) € 7" and (v, v, w')
€ T'. Now v' C Mu) C v. Hence (A(v),v',z) € T’ for some z € II. Also,
Mw) C v C AMw'), and so (w, A(w’),z') € T" for some z' € II. Thus
ax(v)8y @z = 1 = awar(w)as in I'r. But also ayapay = 1 = a,ayaQy.
Thus ayay = @y @y, and so ay(y)ay = Awar(y). Hence a; = a,, so that
¥(az)vo = ¥(az)vg. This implies that z = 2’| by what we have proved so
far. Thus axiom (F) is satified.

Finally, as in the proof of Theorem 3.5 in [1], we see that g — (g)vo
is a covering A7 — A, and hence an isomorphism, because A is simply
connected. This implies the last assertion of our proposition.

Let us now state as a lemma two ways of getting new Z.-tria.ngle presen-
tations from a given one 7. The proof is as in [2, Lemma 2.1], and we omit
it. Recall that a collineation of II is an incidence-preserving bijection of II
mapping each II; to II;, and a correlation of II is an incidence-preserving
bijection of II mapping each II; to IT,,4,—;.

Lemma 2.7 (a) If T is compatible with an involution A : II — II, and if
h :II — II is a collineation, then h(T) = {(h(u), h(v), b(w)) : (u,v,w) € T}
is an .Z,:-tn'angle presentation compatible with hodoh™!.

(b) T is compatible with an involution A : I = II, and if o : Il — II
is a correlation, then aA(T™) = {(aA(w), aA(v),aA(u)) : (v,v,w) € T} is
an .Z:.-triangle presentation compatible with aodoa™?.
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When h is a collineation and h(7) = 7T, we call T invariant under h. It

is easy to see that an A,-triangle presentation 7 cannot be compatible
with two different A’s. Thus the A of a 7 invariant under k must satisfy
A(h(u)) = h(M(u)) for each u € II.

We conclude this section with the following fact, which we use later:

Lemma 2.8. Let T be an Z,:-triangle presentation. Then I't is generated
by the elements a,, u € II;.

Proof. Let IV denote the subgroup of I'r generated by the elements a,,
u € II;. Using the relations ax) = a;? for v € II, and Lemma 2.1, we
see that a, € I if v € II, UII,,. Suppose that i > 1, and that we know
that ¢y €M ifv €I U+ - I[;UIl_j4q U+~ UII, (where 2i <n +1). Let
w € II,_;. Then w C v’ for some v' € IIn_i41. Let v = A(v'). As w C A(v),
there exists u € II such that (u,v,w) € 7'. We must have u € II;. Then
aw = (aua,)”! € I'. Using the relations ax) = a;? for v € II again, we
see that a, €M foranyv € I, U---1I;4, UII,,_; U---UIl,. This completes
the proof.

§3. Invariant .Z;-triangle presentations 7.

Consider a prime power ¢, and an integer n > 2. Let V be a vector space
of dimension d = n + 1 over Fy, and let II = II(V). It is well known (see,
e.g., [5,p. 28]) that fori=1,...,d—1=n,

L] = (@ =D —1)(¢-1)
! (¢f = 1)(gi=? = 1)---(g—1)(g4F = 1)(g4=i=t = 1)--- (g — 1)’

In particular,

¢?-1_ 4
Ml = Mo = =7 =" 4o b 41

_ _ (-1 -1
|H2| lnd—2| (qz _1)(q_ 1) '

In what follows, it is convenient to choose V equal to the field F 4. Then
F:,, acts on II by multiplication: for each ¢ € F;‘d, M : U tUisa
collineation of II. As each t € Fy* fixes each U € II, this induces an action
of F:d /Fg on II. Also, the Frobenius automorphism ¢ : z +— 29 of Fy4
induces a collineation of II.

The Ap-triangle presentations 7 found in this paper satisfy (1.1) and (1.2),
and so are invariant under each collineation in the group of order d(¢? —
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1)/(q — 1) generated by the M,, t € F:,,, and by ¢. By the remarks after
Lemma 2.7 above, the A of any 7 satisfying (1.1) and (1.2) must satisfy

MtU) = t\U) foreacht€FX and U €I (3.1)

and
Me((U)) = (A(U)) for each U €1l (3.2)

Let Tr denote the trace function Tr: Fp« — Fy. For S C F 4, let
St ={y€Fu:Tr(zy)=0forall z € S}.

Then a : U — U is a polarity (i.e., an involutive correlation) of II, because
(z,y) — Tr(zy) is a nondegenerate bilinear form on F . This is useful when
applying Lemma 2.7(b).

Clearly the action of F:,,/ F; on II, is simply transitive, and we can
identify II; and F:,,/F;‘, with Fyzo = z0.Fy € II; and a:oF,;< € F:,/F;‘
being identified. In particular, F, € II, is identified with 1 € F:,,/F;‘.
Using (tU)* = ¢t7'U*, we see that F:,, /Fg also acts simply transitively
on Hd—l . ~

Suppose that an A,-triangle presentation 7 compatible with A : II — II,
satisfies (1.1) and (1.2). Then as F acts transitively on I, = F, /F ¥ and
on Il4—y, A, is determined by A(1), and A(1) = y{1}* must hold for some
v E F;‘, /Fy. Also, (3.2) implies that

{1} = o(v{1}1) = (A1) = M»(1)) = A1) = y{1}*

and so 9! = 1in F:,,/F;‘. So the order, m, say, of v in F:,/F;‘ must

divide both ¢—1 and |F:,/F;‘| = (¢ -1)/(¢g—1). Now (¢¢-1)/(¢-1)=d
(mod ¢ — 1), and so m must divide d (and ¢ — 1). In particular, v¢ = 1.
The next lemma gives another way of forming a new A, -triangle presen-

tation from a given one 7, provided that 7 satisfies (1.1) and (1.2). The
proof is routine, and we omit it.

Lemma 3.1 Suppose that T is an .Z,:-triangle presentation compatible
with A : II — II, and satisfying (1.1). Let § € F:,, [Fy satisfy p%=1. Then
TP = {(u, ¥y, GImEIHINCI) : (4,0, ) € T)

is an Z;-triangle presentation satisfying (1.1) compatible with A8 : IT — I,
where A\8(u) = paim(®) \(u). K T also satisfies (1.2), and if 397! = 1, then
T# also satisfles (1.2).
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The next corollary is immediate from the last lemma and the remarks
preceding it.
Corollary 3.2 Suppose that there is an Z:,-tn'angle presentation T com-
patible with A : I — II, and satisfying (1.1) and (1.2). Then either
A(1) = {1}4, or there is some other A,-triangle presentation satisfying (1.1)
and (1.2) which is compatible with some other ) satisfying A\(1) = {1}+.

For general i € {1,...,d — 1}, we can count the number of orbits in II;
under the action of F:,, by considering Stab(U) = {t € F:,, :tU = U} for
U € II;. It is easy to check that Stab(U)U {0} = {t € Fpa : tU C U} is a
subfield of F ¢, and so equals Fs for some divisor s of d. Moreover, U is a
vector space over Fy.. If its dimension as such is j, then ¢ = js, and so s
divides ¢ too.

In particular, taking ¢ = 2, we see that when d is even, II> consists of
the orbit Op of Fg2, which has order |F:,,/ F :,I, and other orbits, each of
order |[F 7, /F|. When d is odd, II; divides into orbits of order |F:,,/F,;< |

Let us state the above observations as a lemma:

Lemma 3.3. Suppose that d is even. Then under the action of F:,,, II,
divides into exactly N + 1 orbits, where N = ¢(¢?2 — 1)/(¢*> - 1):

I, =0 UO,U---UOpN.

Moreover, [Oo] = [ /F%| = (¢*—1)/(¢~1), and |04] = [F%/F¥| = (g%~
1)/(¢—1) fori =1,...,N. Whend is odd, II, divides into (¢4~ —1)/(¢g*>—1)
orbits, each of order |F 1, /F | = (¢¢-1)/(g-1).

For example, if d = 4, then N = ¢, |O¢| = ¢>+1, and |0;| = (¢* —1)/(¢ -
D=(g+1)(g+fori=1,...,q.

Let V € II,, and suppose that v,,...,v, € Fy« form a basis for V. For
distinct integers m,,...,m, € {0,...,d — 1}, form the determinant of the
matrix whose (7, 7)-th entry is vgm'. If a different basis for V' is used, the
determinant is multiplied by the determinant of the change of basis matrix,
and is thus determined, mod F, by V and the m;’s. Moreover, the ratio of
two such determinants for V, if the denominator is nonzero, is determined
as an element of F 4. For example, if V € II;, m; = 0 and my = 1, the
determinant is vyv§ — v{ve # 0, and we can set

8(V) = the image of v{v; —viv] in F o /Fy . (3.3)

Notice that 6(tV) = t9*26(V) for t € F, (using ¢ on the right to also
denote its image in F:,/F;‘). Also, §(p(V)) = §(V)1. We can also form



60 CARTWRIGHT: Groups acting simply transitively

2 2
v{ v —vyv] , and assuming that it is nonzero (which holds unless d is even
and V € Op), we set

82(V) = the image of vrvz - 01022 inFr/F . (3.4)

Notice that 8,(tV) = t9'+16;(V) for t € FJ%. Also, &(p(V)) = 62(V).
A method of embedding I'r in Aut(A).

We apply Proposition 2.6 to verify that certain homomorphisms I'r —
PGL(n + 1,K) we find are embeddings onto subgroups of PGL(n + 1, K)
which act simply transitively on the set of vertices of the building Z;(K , V).
The field K here is Fg(X), where X is an indeterminate, and v is the
usual valuation (so that v(X) =1). It will be convenient to work with the
building .Z,:(I%, v), where K = F,((X)) is the completion of K with respect
to v, which is isomorphic to .:IT.(K ,v) as a chamber system [8, p. 130].
Embeddings of this type were discussed in [1, Section 4], and we refer the
reader for more details, and to [4, Chapter 7] for generalities on cyclic simple
algebras. We start with an indeterminate Y. It will be convenient to also
use Z = 14+Y. Let Ko = Fy(Y) = Fg(2) and Ly = Fpu(Y) = Fpe(2),
where d = n + 1, as usual. We form the cyclic simple algebra A = Lo[c],
whose elements may be written uniquely

o+ 210+ +24-10%7!,  where Zg,...,24-1 € Ly, (3.5)

and where multiplication is determined by the rules ¢¢ = Z and ozo~! =

¢(z) for z € Lg, where ¢ is the automorphism of Lo determined by ¢(t) = t7
(for t € Fa) and ¢(Z) = Z. Now Lg[o] is actually a division algebra,
because Z¢ is the smallest power of Z which is a norm Np,/k,(£) of some
& € Lo (see, for example, [7, p. 84]), though this fact is not used below.
Now consider an indeterminate X, and let L = Fy¢(X) and K = F¢(X).
Choose any € Fg« such that Trqu/Fq(,B) = t; # 0. Then the norm
Npk(1+BX)equals 1+ 6, X +12 X% +---+143X? for certain other elements
t2,...,ta of Fy. We embed Ko = Fy(Y) into K = Fo(X) and Lo = F(Y)
into L = F 4(X) by mapping Y to ;X + t2X% + -+« + t4X?. The algebra
L[o], whose elements are as in (3.5), but with the z;’s now in L, splits, i.e.,
is isomorphic to the algebra Myx4(K) of d x d matrices over K. To see this,
as in [1, Section 4] one first defines an embedding ¥ : L{o] — Mxq4(L) via

T 0 0

e(z) ... 0

z— ¥(z)= forz € L,

0 0 ... ¢ Yz)
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and
0 1+ 8X 0 0
0 0 1+ 81X ... 0
o Y(o)= : : : :
0 0 0 e 147X
14697 0 0 0

Let &o,...,€n—1 be a basis for Fy« over Fy, and let A € GL(d,F ) have
(i,7)-th entry @’ (&) for i, = 0,...,n — 1. The conjugation M — AMA™!
maps the image of ¥ into Myxq4(K). The map & — A¥(£)A™! is an iso-
morphism L[] — Myxq4(K).

Suppose now that we have a projective geometry II of dimension n, an
involution A of II such that A(II;) = I, 4,—; for each ¢, and a family 7 of
triples (u,v,w) € II? satisfying (A)-(E), but perhaps not (F). We can still
form I'r, and suppose that for each of its generators a,, u € II, we can find
by € Lg[o] such that

(i) For each u € II and for each (u,v,w) € T, byby(u) and bubyb, are
nonzero scalars, i.e., in the centre Ky of Lg[c];

(i) when b, is written as in (3.5), the coefficients are in F4[Z];

(iii) for each u € II, the reduced norm N(b,) (which is the determinant

of the image g, of by in Myxa(K) under the isomorphism defined above)
has valuation d — dim(u).
Then (i) means that the assignment a, — by, u € II, and the isomorphism
Llo] = M4x4(K) described above, induce a homomorphism ¢ of I'r into
PGL(d,K) C PGL(d,F4((X))). Condition (ii) implies that g, has entries
in Fy[X] C F,[[X]]. Consider the building A,(F,((X)),v). Let vo be the
class of the lattice Vo = {aje; + -+ + ageq | a1,...,a4 € F,[[X]]}, where
{e1,...,eqa} is the usual basis of column vectors of length d over F,((X)).
Recall that the neighbours of v are the classes of lattices V satisfying
XV, ;C= 14 ;C= Vo. Thus II;(ve) consists of the lattice classes [gVp], where
9 € GL(d,F4((X))) has entries in F [[X]], Xg~! has entries in Fy[[X]], and
v(det(g)) = d —i. For the first condition implies that gV, C Vj, the second
that XV, C gVy, and the three conditions imply that for some ky,k; €
GL(d,F4[[X]]), k1gk2 is a diagonal matrix, with ¢ diagonal entries 1 and d—i
diagonal entries X. This implies that g5/ XV} is an i-dimensional subspace
of Vo/XVp = F:. Now let u € II;. If we write gugacu) = €ul, then taking
determinants and then valuations, we get dv(cy) =d—i+(d—(d-1)) =d,
so that v(cy) = 1. Thus Xg;! = Xc¢;'gau) has entries in Fyf[X]]. Thus
[guve] € IIi(ve) for each u € II;. Thus condition (1) of Proposition 2.6 is
satisfied.
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We now suppose that, in addition, that 7 satisfies (1.1) and (1.2). More-
over, suppose that there are ag,...,as—1 € F4[Z] so that the b,, for v € II;,
are

by =ug(ao +a1o0+---+ ad_lad_l)ugl (3.6)

where ug € F*, and v = qu;‘ € II;. Then (see the proof of Lemma 4.2

in [1]) to check condition (2) of Proposition 2.6, all we have to do is show
that when t € F 5, an equation TA = AMo, where

P Somom
0 o(t) ... 0 -1t ; —2
= . . . and A= . :
i i RS az a4z -+ 4 @
0 0 ... ¢ ) G G G - G

and where My is a d X d matrix with entries in Fge, can only happen if
t € FY (here @; denotes a;, reduced mod X, i.e., mod Y = Z —1). This is
certainly the case if the g; are all equal tosome a € F. Forift ¢ F,, we can
find s € F 4 such that Tr(s) =0, but Tr(st) # 0. If we multiply both sides

of the equation TA = AMj, on the left by the row vector (s, s",...,s"d_1 )s
then the right hand side equals the zero vector, while the left hand side is
the constant vector whose entries are all aTr(st) # 0. We have therefore
proved the following result:

Corollary 3.4 Suppose that I = II(F ), and that we have an involution
A of I such that A(II;) = I,4,—; for each i, and a family T of triples
(u,v,w) € II3 satisfying (A)-(E), and also (1.1) and (1.2), but perhaps
not (F). Suppose that for each u € II an element b, € F,4(Z)[o] is given,
so that (i)-(iii) above hold. Suppose also that each b,, u € II,, is of the
form (3.6), where each a; € Fy[Z] is congruent to 1 mod Z — 1. Then T
does satisfy axiom (F), and u — [g,Vy] is an isomorphism from II onto the
residue II{vg) of vo = [Vp] in A = Z,:(F.,((X)),v). Also, a, — g, induces
an isomorphism ¢ of I'r onto a subgroup of PGL(d,F4(X)) C Auty(A)
which acts simply transitively on Va, and g — (g )ve is an isomorphism of
AT onto A.

84, A family of Z;-triangle presentations.

In this section, let Il = II(F«). To define an Ajs-triangle presentation
satisfying (1.1) and (1.2), we must first define an involution A : I — II
satisfying A(II;) = II4—; for i = 1,2,3, and also (3.1) and (3.2) above.
Defining A on II; (and thus on II3) is easy, for by Corollary 3.2, we may as
well assume that A(1) = {1}*. It is not so clear how X should be defined
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on II;, and we start this section with some results about II. Recall that
Oy denotes the F;ﬂ-orbit of Vo = Fy2 in II; (see Lemma 3.3).

Lemma 4.1. Let V € II;. Then if V € I3 \ Oy [resp. V € Oy] there exist
unique av,yv € F 5 /Fy [resp. av,7v € F;/F;‘,] such that VL = ayV
and @*(V) = v V.

(a) atv =t~ %ay and iy = t‘f'l*yv forany V €Il; (and t € F;/F;‘ or
t € Fi/F, accordingas V € IIz \ Op or V € Oy).

(b) IV €T\ Oo, then

ay = §(V)I+e §,(V)2a+1 (4.1)

and \
v =8(V)IHT 6(V)TH, (4.2)

where §(V') and 82(V') are defined in (3.3) and (3.4) above.

(c) £V = V,, then vy = 1, and ay is either 1 (if q is even) or (if q is
odd) avy is the unique element in F:. / F;‘, of order 2. In view of (a), this
gives us ay and vy for any V € Oq.

Proof. Suppose first that V = V,, the span of 1 and a € Fg« \ Fy. To
show that V1 = tV for some t € F;ﬁ, we must show that for some %,
Tr(t(a + ba)(c + do)) = 0 for each a,b,c,d € Fy. But this amounts to
finding a nonzero t € {1,a,a%}t. Now 1, a and o® span a subspace U
of Fys of dimension at most 3. Thus UL # {0}, and so we just need to pick
any nonzero t € U L. The existence and uniqueness of ay is now clear, as
well as the first part of (a).

To verify (4.1) and (4.2), notice that & = af — a? and & = af ¢, are
in {1,a}*. For example,

Tr(E20) = Tr(al+q+q2) - Tr(a1+q’+qa) =0

because a!*7+¢° = (2(q!*9*+9"). Thus ré; + s& € {1,002}t for r =
Tr(a?¢;) and s = —Tr(a?¢,). One may verify that

Tr(a®6:2)6) — Tr(e?61)Ez = (a - ot Naf — ot )(o:"2 - a"s)(a" —af )2

which is nonzero if o ¢ F 2, and the image of this in F;/F;‘ is 6(Va)"+"2~
62(Va)?4*1, This proves (4.1) when V =V, a ¢ F 2. To verify (4.2) in this
case, we must check that ¢?(V,) = vV, for v = (a — oﬂ)‘”“l2 (- a?2)¢+1,
This amounts to verifying that ty™1p?(V,) = V! for t = (a — oﬂ)‘”“l2 (a—
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a?°)29+1, But ty~! = af — ot = ¢ for this ¢, and we have seen that both
&and & = {104“2 are in V. Thus (4.2) is proved when V =V,, a ¢ Fp.

Also, ¢(V) = Vg, and so 4y, = 1. The existence of vy for all V € II,,
and the second part of (a) is now clear.

Using 6(tV) = t9+15(V) and §,(tV) = 9 *16,(V'), and the above, we see
that (4.1) and (4.2) hold.

It remains to calculate 7 = ay,. When ¢ is even, Tr(z) = 0 for all
r € F 2, because Fq4 is of degree 2 over Fy2. Thus Vit = Vg, and ay, = 1.
So suppose that ¢ is odd. Applying ¢ to both sides of Vi = 7V}, we have
TV = Lp(‘r%) = o(Vi4) = Lp(V}))J' = = V. Thus 797V, = V,.
Hence 7 € F /F’< has order m d1v1d1ng ¢ — 1. But m must also divide
|F /F>< | = q + 1. The greatest common divisor of ¢ — 1 and ¢ + 1 is 2.
Thus 72 = 1. Now 7 # 1. For otherwise V;' = V4, which implies that
1 € V34, so that 4 = Tr(1) = 0, which is false, as ¢ is odd. Thus ay, = 7 is
the unique element in F‘;‘4 / F:, of order 2.

If in the last lemma we have V = V,, where & € Fg« \F 2, then (mod F)

(2= % )(o? — o)
(a — af)(a?® — a)

(e — a‘f)(a" —af )
@=a(a” —a)

ay = (af — a") and qy =

as we see by dividing the expressions (4.1) and (4.2) by the norm of o — of.

Lemma 4.2. For V € Il,, let ¢y = 1/§(V1). Then
(a) coy =t ey fort € F:h

(b) cov) = ¢;
(c) Tr(1/(cvz'*9)) = 0 for any nonzero z € VL (where “cy” here is
interpreted as any t € F; whose image in F 5 /Fy is cv);

(d) cIHal +q7v = 1 (where, when V € Oy, “cv” here is interpreted as
its image in F /F 3 )

Proof. The statements (a) and (b) are immediate from the properties
of §(V) noted above. To prove (c), let z € VJ‘ be nonzero. Pick any
y € V1 such that = and y span V1. Then ¢! is the 1mage in F Fg

of 2%y — zy?. Hence Tr(1/(cyz'*9)) = Tr((y/z) — (y/z)?) =

To prove (d), suppose first that V € II; \ Op. Now 6(V'L) = §(ayV) =
a¥t'§(V). Notice that 5(V)? = 65(V), and that the norm of a — a?’ is
(a — o Y2a+) | and so & (V)2+) =1 for all V € I, \ Op. Using (4.1)
and (4.2) and these facts, we find that cy = §(V)~7 6,(V)~9". For the
same reasons, we obtain

c'{,“a'{,"'q o(V)~~ ¢ (VY T =1/
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Suppose now that V € Op. Now c't'{','la't'vﬂ*ytv cal +q7v, so we need
only show that c"'/“a"’,o“'yv =1in F3/Fy. Note that §(Vo) € Vo = Fys
When ¢ is even, we have ay, = 7y, = 1, and ¢y, € Fq,/F , and we are
finished. When ¢ is odd, we have vy, = 1 and o}, = 1. Thus a'{/:"" =1.
Also cy, = 1/86(Vyh) = 1/6(ay, Vo) = 1/(a'{,':16(%)) € F 2/Fy, and again
(d) holds.

We are now finally ready to define an .Z;-tria.ngle presentation 7 satisfy-
ing (1.1) and (1.2). We first define a ) satisfying (3.1) and (3 2) as follows:
1. To define A on II,, for 24 € F‘;‘4 we set A(zoFy) = a:oF = (z'F Jt =

{yo € Fys : Tr(yo/20) = 0}.

2. To define X on IIy, for zo € F, we set M(zoF)t) = 25 'F, .

3. For V € II;, we set A(V) = cvgo(VJ‘), where cy € F “/FY was defined
in Lemma 4.2.

It is immediate that (3.1) and (3.2) hold for U € II, U II3, and they hold
for U € II; by Lemma 4.2(a) and (b). To verify that A is an involution, we
need only check that X is an involution on II;. Now for V € II;, we have,
using Lemma 4.2(d),

AAV)) = Meve(VE) = ev M(@(V1))

= evp(A(V))
evp(MavV))
evayp(MV))
evalp(cve(VY))
=BG o (o(V)

1+q_g+¢*
=cy ay T wV

=V
We claim that the set consisting of the triples

(eva®,z7',V) where V € I,z = 2oFy € F){/Fy and 2o € V™,

~ (4.3)

together with their cyclic permutations, is the half 7' of an A3-triangle pre-

sentation 7 compatible with A. Note that we are identifying II) and F’i /Fy
here, as usual.

Let us verify that 7 is an A,- -triangle presentation. We need only check

properties (A), (B) and (C) of an A3-triangle presentation for 7', plus verify

property (F), because properties (D) and (E) clearly hold. It is easiest to
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check (F) at the end of the section, after embedding I'7 in PG L(4, F¢((X))),
by applying Corollary 3.4. Indeed, the only direct proof we have that (F)
holds is long and messy.

We first check the “only if” part of property (A). Notice that if
(evz?,27 1, V) is as in (4.3), then z™! is incident with A(cyz?), for this
just means that Tr(1/(cvzg™?) = 0, which is Lemma 4.2(c). Also, V is inci-
dent with A(z7!) = 25! {1}* because zo € V1 is equivalent to 2oV C {1}+.
Finally cyz? is incident with A(V') because A(V) = eyp(V1).

Let us now prove that 7 satisfies the “if” part of property (A). Suppose
that z = zoF, € II, and V € II, are given, with V and A(z) incident.
Then V C z0{1}%, and so z5! € V+. Thus (z,V,eyz™9) € T. Suppose
next that y = yoF, € I, and V € Il are given with y and A(V) incident.
Thus yo € A(V) = cvp(V1), and so y = cv2? for some z € V4, and
(V,y,271) = (V,evz?,27') € T. Finally, suppose that z = zoF, € II;
and y = yoF, € I, are given with z and A(y) incident. Then z¢ € A(y) =
yo{1}%, and so Tr(zo/yo) = 0. Thus z¢/yo = u — u? for some u € F
(because the map v — u — u? is Fy-linear Fiu — {v € Fyu : Tr(v) = 0},
has 1-dimensional kernel F,, and is therefore onto). Let 2z = u/zo and
V = {z5',20}*. Then

1 1

—z0 — — 24
q 0 =

T, To Yozg

which shows that l/a:o and zo are linearly independent so that V € II,,

_l € V1, and cv is the image in F /F’< of yozf. Hence y = cyz™9, and
(y,a: V)Y=(evz~%2z,V)€eT.

We next check property (C). Suppose that (cyz?,z7',V) € T and
(cvz?,z™? U) € T. We must check that U = V. We know that cy = ¢y
and that z = z¢F,, where 2z, € Ut and zo € VL. Pick yo,20 € F
such that U+ and V' are the spa.ns of {a:o,yo} and {z¢, 20}, respectwely
By assumption, cy = cy, and so zyo — 2oy] = a(zdzg — z¢2]) for some
a € FX. Thus zd(yo — azo) = zo(yo — azo)?, so that yo — azg = bz for
some b € Fy. Thus yo = bzg + azo € VL. Thus Ut =V andso U = V.
Suppose next that both (V,y,z) € T and (V,y,2') € T (where V € II,; and
z,2',y € My = F /F") Then y = cyr~ 9 and also y = cyz' 9. Thus
z? = z'%) so that a: = z'. Finally, if (z,V,y) € T and also (z,V,y') € T
(where V € II; and =z, a:,yGF +/Fg), then y = cyz™ =4

Embedding I'r in PGL(4,F,(X)).

Consider the cyclic simple algebra A = F4(Y)[o] defined in Section 3,
taking d = 4 here. Recall that each element of A can be written uniquely in
the form (3.5). We check the conditions of Corollary 3.4 by mapping each
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Ay (u = Uqu (S Hl) to

by = uo(Z + 0 + 0% + 0%)yj? (4.4)
(note that this depends only on u, not uy), and mapping each ay (V € II,)
to
3 2 2 3 3 3
bV =2 + (2‘11 233 — r;’arg )0.2 + (2?‘122 —2‘1125 )0.3 (4.5)
1z — 27 z, )Tz — 1T

where {2),22} is any basis of V1. As noted before (3.3), the coefficients

of 0% and o3 in (4.5) depend only on V, not on the particular basis chosen
for VL.
One may easily verify that for v = uoF, € II;,

b7 =Z27HZ - 1) uo(Z — o )ug .
We therefore also map aw to bw = uo(Z —a®)u;’ for each W = A(u) € II3.
If u=uoF,; € II; and v = voF¢ € II;, then a simple calculation gives

bW =27 (Z - 1)72 (Z + u(l,_qsvgs_q202 - (u(l,_q3 + vé_qs)aa).

1

Suppose now that z € V1, and that v = z™! and v = cyz?. Then pick
P

any basis {z,,z2} for V! with 2 = ,F;. We can take uo = zJ' and
vo = z7/(2]z2 — z,2]). Some routine algebra yields
3 3
ul—qa _'_,Ul—q3 = _2? 2% - 2‘{22
0 0 zi{zs — z,2§
and A L L o
1-¢° ¢®-¢’ _ T1 T2 —T; T
Ug Yo - # &
128 — 2 2,
It follows that
bububy = Z(Z — 1)? € Z(AX). (4.6)

Also,
AVt = (evp(VH) " = cplo(V) = e app(V4) .

Using ¢! = 6(VL) and (if V ¢ Op) ay = a},) = S(VL)y-r-ag, (v Ly-2a-1

we find that cyal, = §(V1)96,(V1L)9. So if z; and 22 span VL, then y;
and y; span A(V)', where

a:g )
y; = (for j =1,2).

2 2 3 3
q _q 7..92\( 0% .9 9.4
(2] 23 — 2{2] ) (2] 23 — 2{2]
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After a little algebra, we then find that

2 2 3 3

9.9 9 .9 9.9 q9 q9

b -7 TyZy —T) Tz 3 T1Zy — Ty T3\ 3

vy =4+t \—g.—— 7 )° i . 4 )7 -
ziT2 — T17, ziT2 — T17,

More routine calculations show that
bva(v) = Z(Z - 1) € Z(Ax) (4.7)

The verification of (4.7) is a little different when V € Oq. For if V = tVj,
where t € F:h then VL = 7'Vt =t~ lay, Vp = sVh, say, for some s € F;‘..
We can take z; = s and z2 = sa, for any a € F2 \ F,. Then the coefficient
of o® in (4.5) is 0, and the coefficient of o2 in (4.5) is —s7" =1, Now ay, €
F . /F; is either 1 (if ¢ is even) or of order 2 (if ¢ is odd), by Lemma 4.1(c).
Thus —s?" =1 = —1/t9°~! whatever the parity of ¢. Thus

1 2
bv=Z+tq,—_10' .

Now A(V) = tA(V) = tev,p(Vo)t = tey, Vgt Thus M(V)L = (tey,) Vo =
s'Vo, say. Then y3 = s’ and y» = s'a span A(V)1. The coefficient of o2
in by(v) is thus —(s')7~1. Now 1/cy, = &(Vgt) = a%,':l&(%) = (Vo). Ufing
the fact that §(Vp) € FX,, we see that cy, = 1. Hence (s')7 ~1 = 1/t7 1,

and so ! )
2
bavy =2 - prem Gl

and (4.7) for this case is easily verified.

It follows from (4.6) and (4.7) that condition (i) of Corollary 3.4 is sat-
isfied. Clearly condition (ii) is satisfied. Now (4.4) implies that N(b,) =
N(b,) for all v € II,. Thus (4.6) shows that N(by) is independent of
V € ;. Then (4.7) implies that N(by) = £Z%(Z — 1)2. Now (4.6)
shows that N(b;)? = £2%(Z — 1)®. Remembering that Z -1 = Y =
HX + 2 X2+ t3X% + ¢4 X%, where ¢, # 0, we see that each N(b,), u €Iy,
has valuation 3, each N(byv), V € I3, has valuation 2, and each N(bw),
W € II,, has valuation 1. So condition (iii) of Corollary 3.4 is satisfied.
In fact, using the explicit embedding of A in My y4(F4(Z)) described last
section, we can calculate that N(b,) = Z(Z — 1)® for each u € II;, and so
N(by) = Z*Z—1)? and N(bw) = Z*(Z—1) for each V € II; and W € II;.

Finally, the coefficients Z, 1, 1 and 1 in (4.4) are all congruent to 1
mod Z —1. Thus Corollary 3.4 may be applied, showing that 7 satisfies (F),

and that Ay = Z;(F.,((X)),v), ete.
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Arithmeticity of I'r.
If s€ Fy, and j € {0,1,2,3}, then

(Z+a+a2 +¢73)saj(Z+a+a2 +¢73)_1
1

= (2 =)+ (T =)o +(s" =57 ) + (s7 — 1)o*)o”

It follows that if {so,$1,52,33} is a basis of F 4 over F,, so that {sio7 :
i,j =0,1,2,3} is a basis for A = F4(Z)[0] over F(Z), then the automor-
phisms ¢ — b,£b7! (v € IT)) of A have matrices with respect to this basis
which have entries in Fy[1/Y] (recall that Y = Z — 1). By Lemma 2.8, the
same is true for all u € II. Hence if A = Aut(A), then the adjoint repre-
sentation maps 'z into A(F4[1/Y]) = ANGL(16,F4[1/Y]). This exhibits
the arithmeticity of I'z (see [1, §4] for more details).

Families satisfying (A)-(E), but not (F).

If we use the polarity o(U) = UL, U € II, and let 7* denote the Z;-tria.ngle
presentation aA(7"®") (see Lemma 2.7(b)), then for the 7 defined above,
the half (7*)" of T* consists of triples

(evz,z79, ‘P(V))’ (4'8)

where V € II; and z € V1, together with their cyclic permutations. More-
over, T* is compatible with A*, say, where A* agrees with A on II, UIl3,
and is given for V € II; by

(V) =eple(Vh).

Suppose that we take a subset T3 of II; which satisfies (i): if V € II5, then
tV € II for each t € F,; and (ii): if V € II, then o(V) € II}. Suppose

we define an involution A of IT which agrees with A on II; UII3, and on II,
satisfies V) Vel

3 — 1 € 21
AV) = { M(V) ifVell,\I

Form a family 7 of triples consisting of the triples (4. 3), but only for
V € II}, and the triples (4.8) for V € II; \ II;, together with the triples
(A(w), A(v),A(u)) where (u,v,w) is one the triples already given, and the
cyclic permutations of all these triples. Then one may check that 7 satis-
fies properties (A)~(E), and also the invariance properties (1.1) and (1.2).
However, T does not satisfy (F), in general. To give a concrete example,
take ¢ = 3. Then Fg; = F3(6), where 8* = —0 4 1. Then II, divides into
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4 orbits under the action of F (cf. Lemma 3.3): the orbit Op of Vo = Fg =
{0,£1, £6'°,16%° £63°}, the orbit Oy of V; = {0,%1,+6,+6%, £6'3}, the
orbit Oz of Vo = {0, £1,+6%, +6%2 £6°®}, and the orbit O3 of V3 = ¢(V2).
Notice that p(Vp) = Vo, (V1) = 6711, ¢(V2) = V3 and ¢(V3) = V;. Also,
Vi = 6V, ViL = V3, V- = 65V5 and Vit = 6'5V4, while A(Vo) = 6°Vo,
A(Vh) = 0%°V;, A(V2) = V3 and A(V3) = V,. Using the invariance prop-
erties (1.1) and (1.2), all the triples in 7 and 7* can be found from the
lists

(05’025,%)67 (05,025,%)67"
(020,026"/1) eT (020,033,‘,]) eT*
(021’039,‘/1)€7- (021,035,‘/’1)67’1-
(024,038,-‘/1)67- (024,026,‘,1)€7-.
(63,6, \)eT and (6%, W)eT"

(1,6, V) e T (64,6, V) eT*
(05,020,%) eT (010,035,‘,2) eT*
(026,013,‘/2)67- (0‘5,02°,V2)GT"
(034,037,V2)€T (036,037,%)67—.

For brevity, we have written simply “6" ” here to denote 6'F; € F{/Fy, or
equivalently, the 1-dimensional subspace {0, §*, —6*} spanned by 0' These
lists could be shortened slightly; for example, that (6%4,6%7,V;) € T follows
by applying ¢ twice to (6%¢,6'3,V3).

If we take I = Og U O3 U Oj, then the set T of triples will contain

(05,025, VO) (170357 1f2)
(020’038,‘/1) (05,020,-‘/2)
(021,035, Vl) and (02610137 ‘/.2)
(024’026,‘/-1) (034’037,‘/2)
(033, 039, V.I)

The family 7 does not satisfy (F). For A(V) = X (W) = 62V, = A(W).
So (629,6%%, ;) € T and (6%,6',\(V,)) € 7. We have (65,62, V3) € T
and (6°%,6%,0*V;) € T, but 6V, 75 Va = M(Va), so property (F") fails.

Remark. By Lemmas 4.1 and 3.3, for general ¢, ¢ acts as an involution
on the set {Og,0,...,04} of F t-orbits in II;. Clearly it fixes Oy. One
can show that if ¢ is even, then <p fixes no other O, and that if ¢ is odd,
then ¢ fixes exactly one other O;, say O,. The parts of 7 and 7* involving
V € Oy coincide, so we may as well assume that Op C II}. There are thus
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29/2 possible subsets II; if ¢ is even, and 2(4+1)/2 if ¢ is odd, and there-
fore this many families 7. Calculations with the first few prime powers ¢
suggests that (a): these families 7 are the only families satisfying (4)~(E)
as well as (1.1) and (1.2), and compatible with a X satisfying A(1) = {1}+
(see Corollary 3.2), and (b): of these families 7", only two, 7 and T* also
satisfy (F).

§5. A family of Z;-triangle presentations.

Now let II = II(Fys). We define an involution XA : II — II satisfying
MIIL;) = I5—; for i = 1,2,3,4, and (3.1) and (3.2) as follows:

1. To define A on II;, for zg € F:4 we set

MzoFy) = 2oFy = (25" Fg)" = {yo € Fys : Tr(yo/20) = 0}

2. For U € II,, we set MU) a— kyp®(UL) where ky is defined as the
image in F s /Fy of U1 ug — wyuj , for any basis {u;,us} of U.

3. For V € 113, we set A(V) = £y (V1) where £y is defined as the image
in Fli /[F of 1/(uq2uz - ulu;) for any basis {u;,u2} of U = VL.

4. To define A on Il4, for z¢ € F we set /\((a:qu)J') = a:;lF .
In this case, it is routine to venfy that A : [T — H is an involution sat-
isfying (3 1) and (3.2)—just observe that ky = ¢ *1ky, kowy = o(ku),

biy =11 41 Ly, €¢(V) = (,o(fv) and that ¢y = 1/(p2(kVJ.) for each U € II,
and V € II3.
We claim that the set consisting of the triples

(fva:" , 271, V) where V € II3,z = zoF € Fro/F; and zo evt (5.1)

and the triples

(kq‘lk‘f' ,U,W) where U,W €I, and W C A(U), (5.2)

together with their cyclic permutations, is the 7' of an .Z:-tria.ngle presen-
tation 7 compatible with A and satisfying (1.1) and (1.2).

Checking that (1.1) holds is easy, when we notice that (t¢°+1)7*+° equals
N o7, (t)/t for t € F . Clearly (1.2) holds.
Checking (C).

For the triples of the form (5.1) and their cyclic permutations, (C) is

checked in the same way as it was for the Aj-triangle presentations of Sec-
tion 4. For the triples of the form (5.2) and their cyclic permutations, we
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have to show three things: (i) if (v,U, W), (v,U,W') € T', where v € II,
and U, W, W' € II;, then W = W, (ii) if (v,U,W),(v,U’',W) € T', where
v €Il and U,U',W € IIz, then U = U’; and (iii) if (v, U, W), (', U,W) €
T', where v,v' € II; and U, W € II3, then v = v'. In (i), notice that W and
W' are two 2-dimensional subspaces of the 3-dimensional subspace A(U).
So WNW' # {0}. Choose a nonzero z € W N W', and then y € W
and y' € W’ so that W is spanned by {a:,y}, and W' by {z,y'}. Now
(v,U,W),(v,U,W') € T', and so v = 1/k"‘k and also v = 1/kf kfy.-
Thus kw = kwr. Hence 2%y — zy? = a(a:q y —zy ) for some a € FY.
Thus x"a(y-—ay') =z(y—ay )" , so that y —ay’ = bz for some b € Fy. Thus
y € W', so that W = W', and (i) is proved. Similarly, the hypotheses in (ii)
imply that ky = kyr, and that W C AM(U) N A(U’). These then imply that
U and U’ are two 2-dimensional subspaces of the 3-dimensional subspace
(goz(k[—IIW))J'. As before, this and ky = ky: force U = U’ to hold. Finally,
(ii) is clear, as v = l/kg;k"';, =

Checking (A4).

To check the “only if” part of (A) for the triples (5.1) and their cyclic
permutations, we must check that if z = zoFJ, where zo € Vi, then
z3' € Mevz?), V C A(z™?) and £yz? € A(V). Only the first of these is
nontrivial, and it is proved as in Lemma. 4.2(c).

To check the “only if” part of (A) for the triples (5.2) and their cyclic
permutatmns, we must check that if UyW € II;, and W C AU), then
kq kq eUt a.nd l/kq k € AM(W). Let uj,uz span U. Then W is spanned
by wj = kUv , ] = 1,2, for some vl,vg € UJ' Thus kw = k. 'H(vlvzs -

oy vz), and so kU kq = kq+q et (vl vg —vfv] ) To show that k" kq e U+,
we must check that Tr(a:,) =0for j =1,2, where

3

zj = u;(u] uz — uyuj )q+q e

4
(v] v3 “”1”2 )

2 3 4
When we write down Tr(z;) = zj+2]+2] +2] +27 , we get a complicated

expression involving v;’k forj =1,2and k =0,1,2,3,4. Whenever v € U+,
by solving the equations Tr(u;v) = 0 for j = 1,2, we see that

3 2 4 2
v =qv+ v +c3v? and v? = cqv + 507 + cqv?

for
4 4 4 4 4 2 4 2
ud up —uf up ug uf —uf uf ul u] —uf u
= —TF——"3 3 = =
! ¢ _ e TT ¢ et e B ?

a, ¢ g4
Uy Uy — Uz U Uy Uz — Uy Uy Uy U —uz Y
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and
3 3 3 3 3 2 3 2
uf Uy —ul u uf ug —uj uf uf u —ul uf
C4 = P @ ¢ C5 = e @ ¢ Cs = PTI) T qa
u) ”2 — Uy Y u) ”2 — U3 Uy Uy U — Uz U

Applying these to v = v; and v = v,, and substituting into the above
mentioned complicated expression for Tr(z;), we obtain 0, as desired. In
fact, Tr(z;) is a linear combination of v{v, —v 0], vf v, —01022 and v;fvg -
vaf, and the three coefficients are all 0. Thus kl"; k'{,; eUL.

Next we must check that l/k'{;k'{; € A(W)if W C AU). This amounts to
showing that 1/k, kq2"'1 € W1, and so we must show that 'wj/kq Ic"”'l has

trace 0 for j = 1,2. Using the formula kw = k; "'l(va._,3 CH vz) derived
above, we are reduced to showing that Tr(y;) = 0 for j = 1,2, where

;= oj(uf w2 = wsud )T (vfof} —of of) T
But y; is just z;, as defined above, with the u’s and v’s interchanged.

The proof of the “if” part of (A) for the triples (5.1) and their cyclic per-
mutations is similar to the proof of the corresponding fact for the triples (4.3).
The only nontrivial thing is this: suppose that z = zoFy € II; and y =
yoF, € II; are given with z and A(y) incident. Then z¢ € A(y) = yo{1}1,
and so Tr(zo/yo) = 0. Thus z¢/yo = u — u? for some u € Fge. Let
2o = u/zo and V = {z5},20}*. Then

1 1 2

9 _
i e ol
20 0 yoxo

which shows that 1/z¢ and 2 are linearly independent, so that V € II;,
! € V1, and fy is the image in F /F’< of yoa:o . Hence y = yax~1?

a.nd (y,2,V) = (bye~?,z,V) € T.
As for the proof of the “if” part of (A) for the triples (5.2) and their cyclic
permutations, we must show that (i) if z € I}, U € II;, and U C A(z), then

4 3
there isa W € Il such that W C A(U) and z = 1/k{; k{y, and (ii) if z € I,
W € I, and z C A(W), then there is a U € I, such that W C A(U)
3

and z = 1/k{; kly. These are most quickly verified “nonconstructively”,
using (C) and counting. For there are |[I2|(¢% + ¢ + 1) pairs (U, W) such
that U,W € II; and W C A(U), since for each fixed W € II, there are
¢?> + ¢ + 1 1-dimensional subspaces of Fqs /W . Hence the set of triples (5.2)
has |1'I2|(q +qg+1) elements By the “only if” part of (4) and by (C),
(l/k" kL, U W) — (l/k" k ,U) is a 1-1 map of this set into the set of

)
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pairs (z,U), where z € II;, U € II; and U C A(z). But this last set also
has |II;|(¢% + ¢ + 1) elements. So the map is onto, and (i) is proved. The
proof of (ii) is similar.

Properties (B), (D) and (E) are clearly satisfied, while (F) will be ver-
ified by an application of Corollary 3.4, once I'r has been embedded in
PGL(5,F4((X))) as described in the next subsection.

Embedding I'7 in PGL(5,F,(X)).

Consider the cyclic simple algebra A = Fs(Z)[o] defined in Section 3
above, taking d = 5 here. Recall that each element of A can be written
uniquely in the form (3.5). We now check the conditions of Corollary 3.4.
We map each a, (u = uoF, € II)) to

by = w(2% + Zo + 0% + Zo® + 04)u;]

(note that this depends only on u, not ug). A simple calculation shows that
by has norm Z2(Z?% — 1), and inverse 7! = Z71(Z2%2 — 1) uo(Z — o3 )uy .
So if T = A(u) € Iy, we map ar to br = uo(Z — o®)ug ', which has norm
Z3(Z% —1). Then bubx(u) = br(u)bu = Z2(Z2 — 1) for each u € II,. We map
each ay (U € 1I) to

Z(u wo — ' q, _ q @, q°
(u] vo —uyuj )a— Z(ufuz —wauz) 5 Uy Up—wauj

q 7,9 7, ¢ T, ¢

2
by = Z%+ pr <
Uy Uy — U Uy Uy 1U2 Uy Uy — Uy Uy

3
7 _
Uy — U

where {u;,u2} is any basis of U. The norm of by is Z4(Z? — 1)%. Finally,
we map ay (V €1I3) to

3 3 3 2 2 3
7. q_ 4,19 @ ¢ _ 4. 9
by = 7 — 21 Y2 T s Uy U —Uy U 3
v= q° ¢ q? el
uf uz —uyul u] up —ujug

where {u;,uz} is any basis of V<. One can calculate that by has norm
Z(Zz—l)z, and that b,b,by = Z2(22—-1)? ifu = uoFy and v = voFy, where
vo = u;! and uo = uf/(u'{ Uy — ulug2). Also, if U € 11, is spanned by u,
and uz, then (A(U))t = k5 ¢*(U) is spanned by ugs/(u'{suz - ulugs) for
Jj =1,2. We find that

3 3
q9 q9 q9
b -7 U] Uz — U U, U U2 — U UG 3
A(U) = e q @ e q qsa )
Uy g — Uty Uy Uy — Uylsy

and that bUb)\(U) = b)\(U)bU = Z(22 — 1). HUW eIl and W C )\(U),

and if ¢ = 1/k{, k%, then one finds that b,bybw = Z%(22 — 1)2. So all the
conditions of Corollary 3.4 are satisfied.
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Another family of Z;-triangle presentations,

There seems to be a second Z;-tria.ngle presentation with all the symme-
try (1.1) and (1.2). It is defined as follows:

IV eIl we set A(V) = cyp(VL) for cv = 1/6(VL), where, as in
Section 3, for U € II, we let §(U) be the image in Fj /F* of u{us — uyuj
for any basis {uy,u2} of U over F;. In order for A to be an involution
on II, this forces us to set M(U) = ¢~ Y(§(U)UL) for U € II,. We also set
MzoF,) = zo{1}* and A({zo}t) = 25 'Fy if 29 € F:s. I believe that the
set of triples

{(eva?,z7,V): V €ll3,z =2oF) €Iy and z € V1}

and the triples

1
{(W,U,W) U, W eIl and W C )\(U)} s
together with their cyclic permutations, is the 7' of an Z:-tria.ngle presen-
tation 7 compatible with A. Certainly, (A)-(E) hold, but I have verified (F)
only for ¢ = 2, and in this case, my attempt to embed I'r into the cyclic
simple algebra F s(Z)[o] failed.
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Abstract

We survey recent results regarding embeddings of finite simple groups
(and their nonsplit central extensions) in complex Lie groups, especially
the Lie groups of exceptional type.

1. Introduction

Throughout this paper, L will be a finite group. Representation theory for
L is usually understood to be the study of group morphisms L — GL(n, k)
for distinguished collections of fields k (e.g., all overfields of a fixed field
F) and positive integers n. The topic of this survey is motivated by the
question as to what happens if GL(n,-) is replaced by another algebraic
group G(-).

We shall mainly be concerned with the case where L is a finite simple
group (that is, a finite nonabelian simple group) or a central extension
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thereof, and G(k) is a connected simple algebraic group over a field k. A
further restriction of our discussion concerns the field k. It will mostly be
taken to be the complex numbers, in which case we will mainly study group
morphisms from L to the complex Lie group G(€). (See below for some
exceptions in §3 and §5.)

For G(-) of classical type, the theory for representations L — G(C)
differs little from the usual one for GL(n,C). Indeed, a representation
L — GL(n,C) decomposes into irreducible subrepresentations. The de-
composition is well controlled by character theory. Given an irreducible
representation p : L — GL(n,C), it can be checked whether it is conjugate
to a symplectic representation L — Sp(n,C) or an orthogonal representa-
tion L — O(n, €) by verifying whether its Frobenius-Schur index (that is,
>ger P(92)/|L]) takes the value ~1, or 1, respectively (cf. (Isaacs [1976])).
Using the criterion for irreducible subrepresentations, it can also be success-
fully employed for arbitrary (reducible) representations L — GL(n,C).

Thus, the simple connected complex algebraic groups of exceptional
type remain. There are five of them; their universal covers form a chain
with respect to group embeddings:

G2(C) < F4(€C) < 3- E¢(C) < 2- E7(C) < Es(C).

Here, 3 - Eg(C) denotes the universal covering group of type Eg, which has
a center of order 3.

In §4 we indicate what is known about the occurrence of finite simple
groups in each of these. In §2 we deal with some general theory, and in §3
with correspondences between ordinary (characteristic 0) and modular rep-
resentations. §5 deals with related embedding problems, mainly focussing
on finite maximal subgroups of the same overgroups, and finite simple sub-
groups of simple algebraic groups in positive characteristic. §6 is concerned
with an overview of the calculations needed to establish the harder embed-
dings. In §7, we end by a discussion of the computational aspects of the
constructive proofs outlined in the previous section.

We gratefully acknowledge comments by R.L. Griess, Jr. and J-P. Serre
on earlier versions of this paper.

2. Finiteness results

The theorem below generalises a well-known fact known for GL(n,-). A
good reference for a proof is (Slodowy [1993]); it is based on (Weil [1964]).

Consider the set of all maps from L to G, denoted by G%, as an affine
variety by viewing it as the product of |L| copies of the affine variety G.
Regard the set of all representations as the subvariety of G consisting of
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all points p : L — G satisfying the polynomial equations p(g)p(h) = p(gh)
for all g,h € L. Note that G acts on X by conjugation:

(9-p)(h) = gp(h)g™" (9€G, pe X, hel)

If k is a field, we denote by k its algebraic closure. If G is an algebraic
group, we denote by G° its connected component containing the identity.

2.1. Theorem. Suppose L is a finite group and G is an algebraic group.
If k is a field such that H'(L,V) = 0 for all finite-dimensional k L-modules
V, then the number of conjugacy classes of representations L — G(k) is
finite. In fact, in the variety X of all representations, each G-orbit of a
representation is an irreducible component of X.

The vanishing cohomology condition for L on kL-modules is satisfied
if |L] and chark are coprime (this includes the case chark = 0). At least
some condition in this direction is necessary as, for any natural number i,
the elementary abelian group L of order p? embeds into SL(2,k), where

= (Z/p)(t), via

b

éi: (a,b) - (é a-l-lbtt)

this gives an infinite set of representations {@;}i, no two of which are G(k)-
conjugate.

There are more detailed results in this direction. For instance, for p =
char k > 0, Slodowy (Slodowy [1993]) proves that, when fixing a particular
representation of a Sylow p-subgroup of L, the number of conjugacy classes
of representations of L extending this representation is finite (thus answering
a question of Kiilshammer).

A very useful consequence of Theorem 2.1 is the following result.

2.2, Corollary. Let K be an algebraically closed overfield of F and suppose
char F and |L| are coprime. Then any finite subgroup L of G(K) is conjugate
to a subgroup of G(k) where k is a finite extension of F inside K.

PROOF. As before, let X be the subvariety of GL consisting of all group
morphisms L — G. Then X is clearly defined over F'. Let p: L — G(K) be
the embedding afforded by the hypothesis. The above theorem yields that
the G(K)%-orbit of p: L — G(K) is the set of K-points of an irreducible
component of X. Therefore, this orbit contains a point defined over a finite
extension k of F, that is, there is ¢ € G(K) such that g-p : L — G(K)
satisfies (g- p)(L) < G(k). The assertion follows as (g-p)(L) = gp(L)g~*. O

Thus, for any given representation with specified ground field, one may
ask for the minimal degree of an extension field of the ground field that
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realizes it. In particular, it would be interesting to have an analogue of
Brauer’s result (Brauer [1980]), which states that if F' is a finite field, each
irreducible representation p : L — GL(n, F) is GL(n, F)-conjugate to a
representation o : L — GL(n,k), where k is the smallest subfield of F
containing all traces of p(g) for g € L.

In order to give a meaning to such an extension from GL(n,-) to arbi-
trary reductive algebraic groups G, two notions need appropriate general-
izations. The first is irreducibility of a representation: a good candidate for
simple algebraic groups might be that p(L) is not contained in any parabolic
subgroup of G. The second is the extension field of the ground field: taking
k to be the smallest subfield of F containing all traces of elements of p(L) on
any of the fundamental weight modules, we would regain Brauer’s subfield
in case G = GL(n,").

For example it is shown in (Testerman [1989]) that G2(g) embeds in
Es(g) as an irreducible group on a 27-dimensional module for E¢(g) if and
only if /=7 is in GF(g). It is shown in (Cohen & Wales [1993]) that a
certain embedding of L(2,13) into Eg(q?) is in E¢(q) if and only if /=91 is
in GF(g).

3. Relation with the finite groups of Lie type

In this section we review some of the folklore on the connection between
group embeddings in groups of Lie type defined over the complex numbers
and those over a finite field. See also (Griess [1991]), (Cohen, Griess &
Lisser [1993]) and (Cohen & Wales [1992]). We are indebted to Prasad,
Ramakrishnan, and others, for helpful discussions concerning the contents
of this section.

For the duration of this section, let G be a semi-simple algebraic group
scheme. Denote by A its Dynkin diagram, by r its number of nodes (i.e.,
the rank of G), and by A the extended Dynkin diagram of A. Furthermore,
fix a prime number p. We let Q, be the p-adic field and K the p-adic
completion of the algebraic closure of Q,. As is well known, K and C are
isomorphic as fields. Pick an isomorphism which identifies these fields.

For k a finite extension of Q,, let o denote the ring of integers in k and
p the maximal ideal of o. Then o/p = F, where ¢ is a power of p and F,
is a finite field with ¢ elements. The groups G(C) = G(K), G(k), G(F,),
and the subgroup Gr(0) of G(K), where T is a rank r subdiagram of A, are
now defined by the group scheme.

Reduction modulo p is a homomorphism from Gr(o) onto Gr(F,). The
kernel of this map is a profinite p-group. The quotient Gr(F,) is a finite
group of Lie type I'. The quotient Ga(F,) coincides with G(F,). Reduction
modulo p works because of the following key result.
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3.1. Theorem. Suppose k is a finite extension of Q,. Then the group G(k)
is a locally compact group, when endowed with the p-adic topology. Any
finite subgroup of G(k) is compact and is contained in a maximal compact
subgroup of G(k). Given a maximal compact subgroup M of G(k) there
is a rank r subdiagram T of A and an algebraic subgroup Gr of G defined
over k such that M is conjugate within G(k) to Gr(o), where o denotes the
ring of integers in k.

PROOF. See (Bruhat & Tits [1972]; Tits [1979]). n]

Actually, we have been informed (Serre [1994]) that one can do better:
there is a totally ramified extension k. of k such that Gr(o) embeds in
Ga(o.), where o, is the ring of integers of k.. It follows that each finite
subgroup of G(k) is conjugate in G(k) to a subgroup of Ga(o.).

3.2. Theorem. Suppose L is a finite subgroup of G(K). Then there is a
finite extension field k of Q,, in K, a rank r subdiagram of A and a subgroup
L; of G(k) conjugate to L such that L, is a subgroup of Gr(o), where o is
the ring of integers of k. Reduction modulo the maximal ideal p of 0 is a
homomorphism from L; onto a subgroup of Gr(F,) for some power ¢ of p.
The kernel is a p-group.

PROOF. Choose k as in Corollary 2.2, so that, identifying K and C, the
subgroup L of G(€) is conjugate to a subgroup of G(k).

By Theorem 3.1 there is a conjugate Ly of L, in G(k) which is a
subgroup of Gr(o) for some rank r subdiagram I' of A. The kernel in
Gr(o) of reduction modulo p being a profinite p-group, the kernel of its
restriction to L, is a finite p-group. The image of L2 under reduction
modulo p is a subgroup of Gr(F,). a

In particular, if L has no normal p-subgroup, we find that L embeds
in G(F). For, take k as in Theorem 3.2. Then the residue field of o, as
above is again Fg, so by the second assertion of the theorem, there is a
homomorphism from a conjugate Ly of L to Ga(Fy) = G(F,). By the last
assertion and the hypothesis on normal subgroups of L, the homomorphism
is injective.

Now, conversely, given an embedding of L in G(F,), we can lift the
embedding to one of L in G(C) under a familiar condition, which finds its
origin in the following well-known result.

3.3. Lemma. Suppose H is a finite group which contains a normal sub-
group P of order a power of the prime p and H/P is of order prime to p.
Then H contains a subgroup isomorphic to H/P, and all such subgroups
are conjugate in H.
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PRrOOF. This is the Schur-Zassenhaus theorem. See, e.g., (Suzuki [1982]),
Theorem 8.10 of Chapter 2. a

3.4. Theorem. Suppose ¢ is a power of p and L is a subgroup of G(F,)
whose order is not divisible by p. Choose a finite extension k of Q, with ring
of integers o and maximal ideal p of o such that o/p = F,. Then thereis a
subgroup of Ga (o) which reduces modulo p to L. For a fixed isomorphism
between the p-adic completion K of the algebraic closure of k and €, there
is a unique conjugacy class of subgroups of G(C) for which some conjugate
in Ga(o) reduces to L.

PROOF. Denote by L the inverse image in Ga(0) of L under reduction
modulo p. If N; is the kernel of reduction modulo p‘, then N; is normal in
L and N, /N; is a finite p-group. Since the latter quotients are p-groups and
p does not divide |L|, the lemma above and induction on 7 yield that there
exists a unique (up to conjugacy) subgroup L; in L isomorphic to L and
mapping onto L;_; under the natural quotient map f/N,- - E/N,-_l. Thus,
we can find a complement of N unique up to conjugacy in L isomorphic
to L. This complement provides an embedding of L in Ga(o), which by
the isomorphism K = € as above leads to an embedding of L in G(C).
The conjugacy condition follows from the uniqueness of L in L. o

Caution with the uniqueness statement in the theorem is needed, as,
changing the isomorphism between K and €, the conjugacy class of L may
change by a Galois conjugation.

4. Established embeddings and open cases

The existence of finite simple subgroups of complex Lie groups has been of
interest for some time. Systematic searches for such embeddings received an
impetus by Kostant’s conjecture, formulated in 1983. It asserts that every
simple complex Lie group G(€) with a Coxeter number h such that 2k +1
is a prime power, has a subgroup isomorphic to L(2,2h + 1). For G(C) of
classical type, this is readily checked using ordinary representation theory
and the Frobenius-Schur index. For G(C) of exceptional type the theorem
below and the knowledge that k = 6,12,12, 18,30 for the five respective
exceptional types give an affirmative case-by-case answer.
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A quick overview of the state of the art is supplied by Table 1.

Table 1.

Nonabelian simple groups L a central extension of which embeds
in a complex Lie group of exceptional type X,

X, L
G Alts, Alts, L(2,7), L(2,8), L(2,13), U(3,3)
Fy Alt,, Altg, Altg, L(2,25), L(2,27),
L(3,3), 3D4(2), U(4,2), O(7,2), 0*(8,2)
Es Altyo, Altyy, L(2,11), L(2,17), L(2,19),
L(3’4)’ U(473)’ 2F4(2)Iv Mll, J2
E; Altyy, Altys, L(2,29)7, L(2,37), U(3,8), My,
Es Altyy, Altys, Altye, Altyq, L(2,16), L(2,31), L(2,41)7,
L(2,32)7, L(2,61), L(3,5), Sp(4,5), G2(3), Sz(8)"

There are two meanings to be attached to this table:

4.1. Theorem. Let L be a finite simple group and let G be a simple
algebraic group of exceptional type X,.

(i) If L occurs on a line corresponding to X,, in Table 1, then a central
extension of it embeds in G(C), with a possible exception for the four groups
marked with a “7”.

(ii) If X, is as in some line of Table 1 and L appears neither in the line
corresponding to X, nor in a line above it, then no central extension of L

embeds in G(C).

Warnings. To simplify the presentation,
a. we have deliberately neglected questions of conjugacy classes of embed-
dings, and
b. we have not specified the particular nonsplit central extensions of the
simple groups involved.

Ad a. An example where the conjugacy class question is more subtle than
suggested by the table is provided by L(2,13). By (Cohen & Wales [1993]),
it is isomorphic to a subgroup of F,(€) whose normalizer is a finite maximal
closed Lie subgroup of F;(C), whereas the table only hints at the existence
of embeddings via a closed Lie subgroup of F4(C) of type G,.

Ad b. For instance, the simple group L(2,37) listed embeds into a group
of type E7 but not in a group of type Eg because each embedding in an
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adjoint group of type E- lifts to an embedding of SL(2,37) into the universal
covering group 2 - E7(C). Of course, the double cover SL(2,37) of L(2,37)
embeds in the universal Lie group of type E7, whence in a Lie group of type
Eg.

Another warning concerning Table 1 is perhaps in order: The main theorems
in (Cohen & Wales [1992]) and (Cohen & Griess [1987]) only concern sub-
groups not contained in closed Lie subgroups of positive dimension whereas
Table 1 lists all finite simple subgroups (whether in a closed Lie subgroup
of positive dimension or not).

Remarks.

i. The choice of central extensions of simple groups rather than just simple
groups is important because they are the ones needed for the general-
ized Fitting subgroup.

ii. The table does not account for all groups that are involved in Eg(C).
For instance, no central extension of L(5,2) is embeddable in Eg(C),
but a nonsplit extension 2{5+1%}. L(5,2) does embed (cf. (Alekseevskii
[1974))).

iti. The group L(2,29) appears in a Lie group of type By, whence in one of
type Es. So, if the question whether a central cover of L(2,29) embeds
in E;(C) has a negative answer, the group should appear at the bottom
line of Table 1.

iv. Unlike the GL(n,-) case, knowledge of the classes of the individual
elements of an embedded group L does not suffice to determine the
conjugacy class of L in G. This has been observed by Borovik for the
alternating group Alts in E3(C). The problem of how many conjugacy
classes of embeddings of L exist only has a partial solution. See (Griess
[1994]) for the full solution concerning Ga.

v. The group L(2,41) does not appear as a possible subgroup of Eg(C) in
(Cohen & Griess [1987]), but neither does the argument ruling it out.
Also, the group Sz(8) does not appear as a possible subgroup of Eg(C)
in [loc. cit.], whereas the argument ruling it out is erroneous.

vi. Another error in [loc. cit.] concerns the character given for L(2,31).
The restriction of the adjoint character for Eg(C) to the subgroup
isomorphic to L(2,31) constructed by Serre (see below) has a different
character.

PROOF OF THEOREM 4.1(i). In some cases where the subgroup to be em-
bedded is “big enough”, L can be shown to embed by use of character
theoretic arguments, without explicit constructions. Two useful examples

are the following two criteria, valid for both finite and algebraically closed
fields F:
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L Ifp:L — GL(7,F) is an irreducible representation and p(L) leaves
fixed a 3-linear alternating form on F7, then there is a subgroup of
GL(7, F) isomorphic to G(F) such that p(L) < G2(F) (cf. (Cohen &
Helminck [1988])).

II. If, for some positive integer n, the map p: L — GL(n,F) is an irre-
ducible representation such that p( L) fixes a nonzero symmetric bilinear
form and a nonzero alternating trilinear form on F", but no nonzero
alternating quadrilinear form, then p(L) preserves a non-trivial Lie al-
gebra product on F" (cf. (Norton [1988]); earlier, in (Griess [1977]),
similar conditions were given).

In both cases, the conditions can be verified using character tables and
power maps only.

We now deal with the individual groups occurring in the table.

G, Alts, Altg, L(2,7) have 3-dimensional projective representations, so a
central extension occurs in a group of type Az; the latter diagram occurs in
G2, and so, by (Borel & Siebenthal [1949]), there is a closed Lie subgroup
in G3(€C) of type A;, via which central covers of the three simple groups
embed in G3(C). The above argument I. applies to L(2,8), L(2,13). The
group U(3,3) is an index 2 subgroup of the full automorphism group of the
Cayley integers, and as such is known to embed in G;, see (Coxeter [1946)).
For more details, see (Cohen & Wales [1983]). Recently, a new approach to
this classification appeared in (Griess [1994)).

Fy: Alt; < Altg < Altg, and the latter has an orthogonal representation
of degree 8, so embeds in a Lie group of type D4, whence a central cover
embeds in a Lie group of type Fy. Similarly for O(7,2) and 0%(8,2). A
central cover of the group U(4,2) has a 4-dimensional orthogonal represen-
tation, and so embeds in a group of type As, whence in Fy(C). The group
L(2,25) occurs as a subgroup of 2Fy(2), which can easily be seen to embed
in E¢(C) (see below); restriction of the Eg-character on a 27-dimensional
high-weight module to the subgroup L(2,25) shows that a vector is left
fixed; the stabilizer of this vector must then be a Lie group of type Fy,
whence L(2,25) < F4(C). The group *Dy(2) can be seen to embed in
F,(C) by argument II. above. The group L(3,3) occurs in the split ex-
tension 3% : L(3,3) found by (Alekseevskii [1974]). For an embedding of
L(2,27) and more details, see (Cohen & Wales [1992]).

Eq: Altyo < Alt1; embeds in a Lie group of type Ds. The groups L(2,11),
L(3,4), U(4,3), and J2 have nontrivial projective representations of dimen-
sion less than or equal to 6, and so central extensions embed in A5(C),
whence in Eg(C). Similarly M), has an orthogonal representation of degree
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10, so embeds in a group of type Ds, whence in one of type Es. By argu-
ments IL., it can be established that 2 F4(2)’ embeds in E¢(C). For L(2,17)
and L(2,19), and more details, see (Cohen & Wales [1992]).

E7: Alty; < Alty3 is in Dg(C) whence in E;(€C). An embedding for U(3,8)
is given in (Griess & Ryba [1991)]). Finally, M;; embeds in Alt;;. For more
details on maximality and characters, see (Cohen & Griess [1987]).

Eg: Altyy < Altys < Altys < Alty7 embed in Dg(€). The group L(2,16)
embeds in Alt;;. The group L(3,5) occurs in a split extension 53 : SL(3,5)
(cf. (Alekseevskii [1974])). The groups Sp(4,5) and G2(3) embed in a group
of type D7, whence in Eg(C). Finally, L(2,61) is constructed in (Cohen,
Griess & Lisser [1993]). For more details, see (Cohen & Griess [1987]).
Using a more elaborate lifting criterion than the one of Theorem 3.4 Serre
recently proved (Serre [1994]), at least for groups G of exceptional type,
the existence of a subgroup of G(€) isomorphic to PGL(2,h + 1) where h
is the Coxeter number (starting from the existence of a particular subgroup
of type A; in G(Fp+1)). This establishes the existence of a subgroup of
E3(€) isomorphic to PGL(2,31).

SKETCH OF PROOF OF THEOREM 4.1(ii). This part of the theorem uses
the classification of finite simple groups. The proof can be found in (Cohen
& Griess [1987]) for E7 and Es, (Cohen & Wales [1992]) for Fy and Es, and
(Cohen & Wales [1983]) for G2. Some of the main techniques are discussed
below.

First, due mainly to (Landazuri & Seitz [1974]), for any given finite
simple L there is an explicitly known number rp such that each nontrivial
projective representation of L has degree at least r. If a central cover of L
embeds in G(C), then the smallest high weight representation has dimension
at least ry. For G = G4, Fy, Eq, E7, Eg, this gives r; < 7,26,27,56,248.
This leads to an explicitly known finite list of simple groups for which the
existence of an embedding needs to be checked.

In most cases, the list resulting from the Landazuri-Seitz bound rp, is
still too big for a detailed analysis. An extremely useful result that helps
to trim down the list further is due to (Borel & Serre [1953]). It states that
every supersolvable subgroup of G(C) is embeddable in the normalizer N
of a maximal torus T of G(C). Its use lies in the fact that the structure
of N is completely determined: T = €” where r is the rank of G, and
N/T is the Weyl group of G. Thus necessary conditions for the existence
of an embedding of L in G can be derived in terms of the structure of all
supersolvable subgroups of L. For example, the rank of a maximal abelian
p-subgroup of L is at most r + 1 when L is embedded in G(€) (cf. (Cohen
& Seitz [1987]; Griess [1991])).
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Another useful criterion comes from the limited number of classes of
elements of given order in G(C) and knowledge of their centralizers. For
instance, the possible traces on small G-modules can be readily computed (it
is fully automated in LiE, cf. (Leeuwen, Cohen & Lisser [1992])). This gives
rise to necessary conditions on the characters of L for them to be restrictions
of characters of the ambient Lie group G(C) on a given small-dimensional
high-weight module.

There are other conditions on the characters of L that must hold for
them to be restrictions of G(C)-characters if L embeds in G(C). For in-
stance, on the adjoint module, L must leave invariant a symmetric bilinear
form and an alternating trilinear form; these conditions can be expressed
in terms of characters. In (Cohen & Wales [1992]) a more detailed relation
between the characters that holds for the Lie group but not for “likely”
character restrictions for G2(3), was used to show that G(3) cannot be em-
bedded in Eg(C). More specifically, let 1, x be the characters of 3 - E¢(C)
on high weight modules of dimension 27 and 78, respectively. Then v ® ¥
contains x. Assume now that G5(3) < Eg(C). Then, by character argu-
ments, we see that L = 3 - G2(3) < 3 E¢(C), and that there are unique
characters v;, x1 of L such that ¢|L = ¢, and x|L = x;. Nowﬂ@%
does not contain xi, a contradiction with x|L occurring in ¥|L ® ¢|L.

If such arguments do not help, an explicit model of the group is useful.
This model is usually taken to be the smallest dimensional high-weight
module of G. o

In conclusion, in establishing the existence of an embedding of a central
extension for finite simple groups, we only encounter computational diffi-
culties for the Suzuki group Sz(8) in Eg(C) and for the groups L = L(2, s)
with s = 17,19,27,29,32,37,41,61 in the respective cases X, = Fg, Es,
F,, E;, Eg, E;, Es, Eg. In view of part (i) of the theorem, we have the
following result.

4.2. Theorem. Kostant’s conjecture holds.

To finish off the question marks of Table 1, the following open questions
need to be solved.

4.3. Open problems. Establish that L(2,29) embeds in E;(C), and that
L(2,41), L(2,32), and Sz(8) embed in Eg(C).

The first of these, the only case left open for E7, is probably the most
straightforward one. The centralizer of the image of the diagonal of L(2,29)
in E7(C) is a group of type Ts A, (that is, a product of a central torus of
dimension 6 and (P)SL(2,C)). From §6, it will be clear that this slightly
complicates the approach to a construction used for cases where the cen-
tralizer of a similar image is minimal, i.e., a maximal torus of G.
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5. Related embedding problems

Embedding other groups in simple algebraic groups. In (Borovik
[1989]; Borovik [1990]) perhaps the most remarkable finite subgroup of any
Lie group appeared: it is a finite maximal closed Lie subgroup of Es(C),
whose socle is Alts x Altg. It is the only occurrence of a subgroup of a
simple complex Lie group G(C) whose normalizer is a finite maximal closed
Lie subgroup of G(€) and whose socle is a product of more than one simple
group.

Now let L be a finite maximal closed Lie subgroup of a complex simple
Lie group G(C) of exceptional type. If L has a nontrivial abelian normal
subgroup, then L is known by (Alekseevskii [1974]; Alekseevskii [1975]). If
not, then either L has socle Alts x Alts (and G has type Eg), or L has a
simple socle, in which case the results of §4 apply. Thus, finite maximal
closed Lie subgroups of G(C) are well understood.

Modular representations of finite simple groups. The analog of The-
orem 4.1 for algebraic groups over algebraically closed fields of positive
characteristic p > 0 is more difficult. One extreme is the situation where
(JL],p) = 1; by Theorems 3.2 and 3.4, this can be brought back to the Lie
group case. At the other extreme, L may be a group of Lie type of the same
characteristic. The study in (Seitz [1991]) shows how intricate this situation
is.

On the positive side, many constructions as suggested by Table 1 go
through due to the results in §3. To indicate that extra embeddings arise,
we mention a few, without attempting to be exhaustive. In (Kleidman &
Wilson [1993]), the sporadic simple groups embedding in a finite group of
exceptional Lie type are determined. Apart from the sporadic simple groups
L that can be found by use of Theorems 4.1(i) and 3.2 above, they found
M, (in Ee(‘l)), Ji (in Gz(ll)), J3 (in E6(4)), Ru,HS (both in E7(5)), Fi,
(in E¢(4)) and Th (in Eg(3)). The reader is warned that here, as opposed
to [loc. cit.], no exhaustive list is given of the groups of Lie type in which
the sporadic groups occur. Earlier, several of the sporadic groups were
hypothesised (notably by Steve Smith for Ru and HS) or proven (e.g. by
(Thompson [1976]) for Th and by (Janko [1966]) for J,) to embed in a group
of exceptional Lie type. The added value of [loc. cit.] is that it establishes
exactly where these groups occur and that the list is complete.

Modular representations of other groups. In the theory of maximal
finite subgroups of algebraic groups over fields of positive characteristic,
much progress has been made, especially for finite and algebraically closed
fields. The cases where L has a nontrivial normal abelian subgroup have
been dealt with in (Cohen et al. [1992]). Borovik’s remarkable subgroup
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remains the sole finite maximal closed subgroup whose socle is a product of
more than one simple group (cf. (Borovik [1990]; Liebeck & Seitz [1990])).
The remaining case, where the socle is simple and there is no abelian normal
subgroup, is very hard. See (Seitz [1992]) and references contained therein,
for general results in this direction. The determinations of maximal finite
subgroups of groups of Lie type G2, F, and Es are fairly satisfactory, due
to, among others, (Aschbacher [1991]; Kleidman [1988]; Magaard [1990]).
Those for E; and Eg are still unfinished. It should be noted that not all
finite subgroups are contained in maximal finite subgroups. Many finite
subgroups of a torus are examples.

6. Description of hard embeddings

The earliest description of a method for an embedding of an L(2,s) in an
exceptional Lie group was perhaps (Meurman [1982]) (although in this case,
according to I. of §4, no explicit construction was necessary). A method .
along the same lines works in principle for most of the hard cases. The
starting point for these constructions is a presentation for L = L(2,s) by
generators and relations, together with a model for G.

By way of example, consider the group L(2, s), where s is an odd prime.
It has a presentation of the form

Li = (ut,w|u® =tCD2=1 tut=! =y,
w? =1, wtw=1"",

(uw)® = 1, wudw = t*u'wu’)

for integers g, a, 1, J such that
i. ¢ mod s is a generator of the multiplicative group of Z/s,
ii. a=(s—-3)/2 (mod s),
ii. i=¢7* (mods)andj=:"' (mod s).
In particular, the following map on {u,t,w} can be extended to an
isomorphism L, — L.

11 g O 0 1
UH:I:(O 1), tl—>:|:<0 5_7_1), w|—>:|:<_1 0).

Here § stands for g mod s. The subgroup (u,t} of L; is clearly isomorphic
to a Borel subgroup of L, and hence a Frobenius group of order s(s — 1)/2,
and so a Todd-Coxeter enumeration for the presentation with respect to
this subgroup of L, (yielding that (u,t) has index s + 1) suffices to show
that L and L, are isomorphic.
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Next, a model for G(-) is needed. In almost all cases, G(F), for a suit-
able field F, is viewed as a subgroup of the linear group GL(n, F') preserving
a form or a multiplication on F*. In (Cohen, Griess & Lisser [1993]) the Lie
algebra product p is used to define G, that is, G(F') is viewed as the sub-
group of GL(n, F) of all matrices preserving p. In (Griess & Ryba [1991])
G(F) is viewed as the subgroup of GL(n, F) of all matrices which leave in-
variant (under conjugation) the Lie algebra L corresponding to G(F'), where
L is presented as a linear space of n x n-matrices over F.

In such a setting, a maximal split torus T is fixed, usually the subgroup
of all diagonal matrices in G(F'), and its normalizer N in G(F') is a monomial
group, which can be described explicitly.

It is easy to embed (u,t) in G(F) provided F contains s-th roots of
unity. Because this group is supersolvable, the theorem of Borel-Serre
mentioned in the proof of 4.1(ii) (a variant for algebraic groups is due to
(Springer & Steinberg [1970])) yields that, up to conjugacy, we may assume
(u,t) is contained in N, the normalizer in G of the standard maximal torus
T of G. The structure of N then forces the image of u to lie in T. The
T-coset of the image of ¢t in W = N/T belongs to a well-studied conjugacy
class inside the Weyl group. In most cases, for instance in the Kostant
series, the image of ¢t in W is a regular element in the sense of (Springer
[1974]). This implies that all elements in the inverse image Tt C N are
conjugate in G(F).

Now suppose we are given such an embedding of (u,t) into N. We
shall denote the images of u and ¢ also by u and ¢{. How do we extend it
to an embedding of L; into G? In order to find an element in G which is
the image of w € L; under an embedding, we start with we € N inducing
an involution inverting ¢t in W. Due to the good control over N, such an
element wy is easy to find. The next stage is to look for w € weC, where
C is the centralizer in G(F') of t. If t is a Coxeter element, C is a maximal
split torus (in general, the dimension of C is at least the Lie rank r of G).
Maximal split tori are conjugate. Suppose now that ¢ is a Coxeter element.
In order to be able to compute with elements of C, we need to identify this
group with an explicit conjugate of T, that is, we need to find d € G with
dTd™' = C. For this operation, it is useful to have (s — 1)/2-th roots of
1lin F. Thus, an appropriate choice for F would be a field of prime order
1 + ms(s — 1)/2 for a suitable natural number m. (If L = L(2,61), we
can take m = 1 so that |F| = 1831.) Here, for the first time, we need an
explicit model for G. We can take it to be G(F) = Aut g, where g is the
corresponding Lie algebra defined over F.

Computationally, finding d is a hard step. An eigenspace decompo-

sition of F™ with respect to d is needed, but is not enough. In (Cohen,
Griess & Lisser [1993]), detailed information regarding the behaviour of the
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eigenspaces under the multiplication p was exploited to finish this step.
But the result is gratifying in that it enables us to explicitly construct C,
so that the embedding problem can be transformed into a set of equations,
the unkowns of which are the entries of a matrix representing an element
z € C = dTd™!. The number of unknown entries in z is » = dim T if we re-
gard the diagonal entries of d~!zd as monomials in r independent variables,
or n, if we regard that diagonal as n = dim G linear variables.

The final step consists of solving the equations pertaining to the relation
(uw)® = 1 (often the most complicated relation wufw = t*u‘wu’ is not
needed). To this end, rewrite this relation as:

UWTU = wo:cu_lwox

for z € dTd™!. By letting these matrices act on vectors y € dt, where t is
the Cartan subalgebra related to T, we get the equations

UWQTUY = wo:cu_lwoy,

which are linear in z. Big systems of linear equations are more easily solved
than small systems of polynomial equations. Thus, for the case s = 61,
the linear equations in n = 248 variables were quite manageable, whereas
the polynomial equations in r = 8 variables were extremely difficult to
solve. (Recently, A. Reeves, using the software package Macaulay, managed
to solve a set of polynomial equations derived in the course of the work
described in (Cohen, Griess & Lisser [1993]); it took her Sparc server little
over an hour to find the unique solution.) Seeing to it that |F| is coprime
with |L|, we can conclude by Theorem 3.4 that L embeds in G(C).

In some cases, the lifting argument was not needed; for instance, in
(Cohen & Wales [1993]), the group L(2,13) could be explicitly embedded
in 3. E¢(C).

An entirely different method of construction, based on computer exper-
iments, is to be found in (Kleidman & Ryba [1993]). The method works with
a smaller field F, and has a probabilistic portion (for finding an embedding;
the resulting existence proof is not probabilistic).

7. Existence by computer

The kind of proof described in the previous section raises the question about
construction of an embedding by means of computer. In this section, we
discuss some of the issues regarding an existence proof by computer.

It goes without saying that a computer-free proof, if it did not degen-
erate into a dull stack of computations accounted for on paper, would be
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much preferable. But given the fact that no such proof of Kostant’s conjec-
ture is in sight, we are faced with the question of what is acceptable as a
proof when computations are involved that can no longer be checked by a
single person using pad and pencil.

For the sake of exposition, it is convenient to revisit the embedding
described in the previous section. So, suppose we are given three square
matrices u, ¢ and w of size 248 and we wish to verify that they generate a
subgroup of the Lie group of type Es isomorphic to the finite group L =
L(2,61). Here, by ‘being given’ a matrix of this size, we mean that there is a
simple routine available for generating them, or that they are on file, because
the amount of data is simply too large for visual inspection or typing. We
need to be able to multiply two such matrices. These computations are
useful since it is possible to verify an identity between products of matrices.
In particular, checking whether «, ¢ and w satisfy the defining relations for
L, is feasible.

For the computations involved it is essential that the entries lie in a field
of moderate size, such as Z/p for p a prime less than 10. Multiplication
of two matrices of this size would otherwise not be practical. This shows
the importance of the lifting results: the computer calculations will only
explicitly embed L in G(Z/p); Theorem 3.4 is subsequently used to derive
the existence of an embedding in G(C).

In purpose-dedicated software, multiplication of two 248 x 248-matrices
over such prime order fields takes less than a second. In packages like GAP,
MAGMA, and LiE which are specially suited for computations with such
matrices, it will take several seconds, which is still acceptable.

As a consequence, it is possible for everyone with access to a work-
station with one of the abovementioned packages to perform the necessary
matrix multiplications in order to be convinced that the defining relations
for L, are satisfied. So much for the verification that u, t and w generate a
subgroup of GL(248,Z/p) isomorphic to L.

Another part of the verification that L embeds in G(Z/p) is the check
that u, £ and w preserve the Eg Lie algebra product. To this end, the
Lie algebra product p is given as a vector u(z,y) of 248 polynomials in
the 2 x 248 variables z,y (representing vectors of (Z/p)?*®). Then, for
k=1,...,248 and ¢ = u,t,w, it is checked whether, for generic vectors z
and y, the k-th component of the vectors u(gz,gy) and gu(z,y) coincide.
By reduction of the check to one component at a time, this computation is
feasible in a general purpose package (such as Maple or Mathematica).

In general, it can be argued that, provided the source code and the
software used is well documented, widely available and implementable, com-
putations that are independently verifiable (with relative ease) can be ac-
cepted as parts of a mathematical proof. The argument in defense of ac-
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ceptance is that, if the intermediate steps documented in the proof suffice
for a monastery of mathematically skilled monks to be able to perform
the computations within a reasonable time span, the usual proof check is
conceivable (albeit blown out of proportion) in times and places where no
computers are available.

Although the proof requires relatively little computer effort, finding
such a proof can be much more time consuming. Indeed, this has been the
case in the computer search for the right matrices yielding the preceding
embedding of L in G(Z/p), especially w. But, once the ‘oracle-like’ results
are establish, the time-consuming constituents of the computer work need
not be repeated (with the minor exception that, in (Cohen, Griess & Lisser
[1993]), a uniqueness proof (up to conjugacy) of the embedding of L(2,61)
in Eg(C) is given that depends on computer computations).

8. Conclusion

Most embedding questions regarding finite simple groups in complex Lie
groups of exceptional type have been solved, except for the four persistent
problems of §4.3. More detailed questions are still (partially) open, such as
minimal splitting fields, the number of conjugacy classes, a description of
integral representations, and a geometric interpretation of the existence of
such amazingly small groups as maximal closed Lie subgroups of such huge
Lie groups.
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Flag-transitive extensions of buildings of type
G2 and C3

Hans Cuypers

1. Introduction

In recent work of Weiss, Yoshiara, Meixner and others many sporadic simple
groups are characterized as flag-transitive automorphism group of a diagram
geometry which is an extension of a building. See for example [1, 11, 13, 15,
16, 17].

In this note we extend Weiss’ work [15, 16] on extensions of generalized
hexagons (i.e. extensions of buildings of type Gy), see also [1], to extensions
of buildings of type G4 or C}, thereby obtaining geometric characterizations
of the sporadic groups HJ, Suz and Co,. (We use the notation of [15], see
also Section 3.)

Theorem 1.1 Let T’ be a residually connected diagram geometry with dia-
gram

_t or c
1 s t 1 S ts )

in which the point residue is a classical or dual classical generalized hezagon
or a dual polar spuce with finite parameters s and t, respectively, to, where
s > 2. Assume that Aut(T) is flag-transitive on T'. IfT" satisfies the following
condition:

(*) there are three pairwise adjacent points not in a circle,
then it is isomorphic to one of the following:

1. the extended generalized hexagon on 24 points related to GLo(7)/{—1I);
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the extended generalized hexagon on 64 points related to 2%:7:6;

the extended generalized hezagon on 64 points related to 25:G»(2);
the extended generalized hexagon on 128 points related to 27:G(2);
the extended generalized hexagon on 120 points related to PSpe(2);
the extended dual polar space on 256 points related to 2%:Spe(2);
the extended dual polar space on 2300 points related to Coo;

the extended generalized hexagon on 36 points related to G2(2);

T T A T o T -

the extended generalized hexagon on 162 points related to PSU,(3);

~
S

the extended generalized hexagon on 100 points related to HJ;

11. the extended generalized hezagon on 1782 points related to Suz.

For existence of the geometries occurring in the above result, the reader
is referred to [1, 3, 15, 16].

Generalized hexagons as well as rank 3 dual polar spaces carry the struc-
ture of a near hexagon. This indicates that extensions of buildings of type
G5 and C3 can be studied by similar methods.

As already mentioned before, parts of the above theorem also follow from
the work of Van Bon, Meixner, Yoshiara, and in particular of Weiss, see
[1, 11, 15, 17]. In [15] for example, Weiss studies extensions of the classical
generalized hexagons related to the groups Ga(q) and 3Dy4(q) satisfying con-
dition (*). He finds the examples related to the groups 26:G5(2), 2":G,(2),
HJ and Suz. However the example on 120 points related to PSpg(2) is
missing. Weiss informed us that this example should appear in 4.5 of [15],
where the coset enumeration of the group G 1, leads to a group isomorphic
to PSpe(2) and not to the trivial group, as stated incorrectly in [15].

The proof of the above result is, for the greater part, independent of
Weiss’ work in which an important réle is played by coset enumeration on
a computer. Here we use geometric and graph theoretical methods to re-
construct the geometry from the local information. Only in the case where
the residue of a point is the generalized hexagon of order (2,1) on which a
flag-transitive group 7:6 is induced, we use Van Bon’s results [1], which do
rely on coset enumerations by computer.

Various ideas used in this paper come from [7, 8] where purely geometric
characterizations of the extended generalized hexagons and dual polar spaces
are given.
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2. Preliminaries

In this section we give two preliminary results that will be of use in the next
section.

The finite classical or dual classical generalized hexagons are the gener-
alized hexagons associated to the groups Ga(g), 3D4(g) and PSL3(g):2. The
dual polar spaces of rank 3 are the dual polar spaces related to the groups

PSpe(q), Of (g), O7(q), O3 (q), PSUs(q) and PSU(q).

Proposition 2.1 Let T’ be « finite classical or dual classical generalized
hexagon or dual polar space of rank 3 with at least 3 points per line, and G a
flag- transitive group of automorphisms. Then either G is distance transitive
on the associated near hexagon and induces the 3-transitive group PG Ly(s)
on each line of the near hezagon or we have

(i) T is a a generalized hezagon of order (2,1) and G ~ 7:6;

(1) T is a generalized hezagon of order (8,1) and G ~ 73:18;

(iii) T is the classical generalized hezagon of order (2,2) and G ~ G5(2)' ~
PSUs(3).

Proof. This is an easy consequence of [10, 14].
Proposition 2.2 Let T' be a flag-transitive one-point-extension of a finite
classical generalized quadrangle of order (s,t) withs,t > 2. ThenT is isomor-
phic to the extension of the PSps(2) quadrangle related to the group 24:Sp4(2)
or of the Og (2) quadrangle related to PSpe(2).

Proof. This can be found at various places, see for example [4, 13].

3. Extensions of near hexagons

In this section we give a proof of Theorem 1.1. Let I be a geometry satisfying
the hypothesis of that theorem with diagram

or c

and flag-transitive group G of automorphisms. The type 0, 1, 2, respectively,
3 elements of T' are called the points, edges, circles, respectively, extended
quads of I'. Two points on an edge are called adjacent.
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Let p be a point of I'. By Proposition 2.1 we find that the action of
G, induced on T, is primitive except in the exceptional cases (i) and (i7)
of Proposition 2.1. Van Bon has considered extensions of the generalized
hexagon of order (2, 1) satisfying (*), in which the stabilizer of a point induces
a Frobenius group 7:6 as in 2.1(¢) on the local hexagon at that point. He
finds two such extended hexagons; these are the extended hexagons under
(1) and (2) of Theorem 1.1. In [16], Weiss gives an easy argument showing
that there exists no extension of the generalized hexagon of order (8,1) in
which the point stabilizer induces the Frobenius group 73:18 as in 2.1(iz) on
the residue of the point. Thus for the rest of this section we can and will
assume that the stabilizer G, of a point p of I' does not induce a group as
in 2.1(¢) or (4i) on I',. Hence G, acts primitively on I';, which by standard
arguments of [15, 17] implies:

Lemma 3.1 Two extended quads, circles or edges have the same point shadow
if and only if they are the same.

It follows that we can identify the edges, circles and extended quads with
their point shadows. The point graph G of T is the graph whose vertices are
the points of I'; and whose edges are the edges of I'. If p is a point of I, then
we often identify the edges on p with the points adjacent to p inside G. The
set of points adjacent to p is sometimes denoted by p. For each point p the
geometry I', carries the structure of a near hexagon with parameters (s, t2,t),
where t; = 0 if I, is a generalized hexagon and t = #5(¢3+1) otherwise. Since
G is transitive on the points of I', these parameters are independent of p.

The following two lemmas and their proofs are straightforward general-
izations of the Lemmas 2.2 and 2.3 of [15].

Lemma 3.2 Let p be a point of T', then G, acts faithfully on T'p.

Lemma 3.3 s < 4.

By condition (*) in the hypothesis of the theorem and 2.1, we find that
T is either a one-point-extension of the local near hexagon or satisfies the
following condition for i = 2 or 3:

(#); {z,y,2} is a clique of the point graph not in a circle if and only if the
distance between y and z in T, is ¢;
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except possibly when T' is an extension of the classical generalized hexagon
of order (2,2), while the group induced on this hexagon is isomorphic to
PSUs(3) ~ G4(2)'. The next lemma, however, shows that this exception
does not occur. (Compair with the proof of Lemma 4.5 of [15].)

Lemma 3.4 IfT is an extension of the classical hexagon of order (2,2), then
it is either a one—point-extension or satisfies (*); for i =2 or 3.

Proof. Suppose the contrary. Let p be a point of I'. The group G, does not
act distance transitively on I, and hence is isomorphic to PSU3(3). If gis a
point of T'p, then G, 4 is transitive on the points at distance 1, respectively,
2 of ¢ in I', and has two orbits of size 16 on the points at distance 3 from g¢.
Each line of I', containing a point at distance 3 from ¢ meets both orbits of
size 16.

Since we assume I' to be a counterexample to the statement of the lemma,
there is a point r of I', at distance 3 from ¢ that is adjacent to ¢. However, not
all points at distance 3 from ¢ are adjacent to ¢. We have G, 4 = G, 4,r}-
Since each line of I, through r contains a point at distance 3 from ¢ not in
rCrs each circle on p and r contains at least one point not adjacent to q.
If inside T, the points p and ¢ are at distance 2, then the circle on p and
r which in T, is the line on p containing some point at distance 1 from ¢
contains only points adjacent to ¢, which contradicts the above. Thus in T,
the distance between p and ¢ is 3. By the same argument we find that p and
r are at distance 3 inside I'y. Since there is only one orbit of adjacent point
pairs {¢,r} in T, that are at distance 3, we find that G, ¢ ,} is transitive on
{P, Q7r}7 and G{P:‘I}»" = GPv‘I»"'

Let C be a circle on p and ¢g. Then in the stabilizer of this circle we find
an element g switching p and ¢, i.e. with p? = ¢ and ¢ = p. Now consider
{p*,¢%,v9} = {p,q,r9}. The point r? is at distance 3 form p inside I';. So,
by the above, 79 and ¢ are also at distance 3 in I';, and in G, 4 there is an
element h with (r9)* = r. But then gh € G{p g} \ Gp,q,r, which is empty. A
contradiction.

The Propositions 3.5, 3.6 and 3.13 below are concerned with the geome-
tries I' that are one-point-extensions of the local near hexagon, or satisfy
condition (%), respectively, (*)s. Together they provide us with a proof of
Theorem 1.1.

Proposition 3.5 IfT' is a one—point—eztension, then it is isomorphic to the
extension of the classical generalized heragon of order (2,2) related to the
group 2%:G5(2).
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Proof. First assume that I' is an extension of a dual polar space. Then by
Proposition 2.2 we find that s = 2, and £ is either 2 or 4. So T’ is an extension
of the dual polar space related to PSpg(2) or PSUs(2). In particular T
contains 1 + 135 or 1 + 891 points. If I’ is locally the PSpg(2) dual polar
space, then it contains 136.63/16 extended quads. Since this is not an integer,
we obtain a contradiction. In case I is locally the PSUg(2) dual polar space,
we find that the stabilizer of a point p satisfies PSUg(2) < G, < PSUg(2):S5s.
So the order of G equals 217+".3%+™ 5.7.11.223 where n,m € {0,1}. Consider
a Sylow-223-subgroup S of G. The elements of order 5, 7, 9 and 11 can not
normalize ., which contradicts Sylow’s Theorem. See also [11].

Now suppose I' is the extension of a generalized hexagon of order (s,1).
If t = 1, then the number of circles in T equals (1 + (1 +s+s?)(1+3))(2(1 +
s+ 5%))/(s+2). Thus s # 3. If s = 2, then G is a 2-transitive group on
22 points, with point stabilizer G, isomorphic to PSL3(2):2. In particular,
|G| = 25.3.7.11. Consider a Sylow-11-subgroup S of G. The elements of
order 3 and 7 can not normalize S, and the number of conjugates of § is
thus 27.3.7, for some n < 5. By Sylow’s Theorem this number is 1 mod
11, and thus equal to 25.3.7. Hence G contains 2%.3.5.7 elements of order
11. Each element of order 3 in G fixes a unique point of I'. Thus there
are 22.56 elements of order 3 in G. But then |G| > 26.3.5.7 + 22.56 >
2°.3.7.11, again a contradiction. If s = 4, then the point stabilizer G, satisfies
PSL3(4):2 < G, < Aut(PSLs(4)), and the order of G is 23+".32+™ 5.7.53
where n,m = 0,1. If G, contains a field automorphism ¢, then the fixed
points of & are the points of a one-point— extension of the P.SL3(2)-hexagon
of order (2, 1), which contradicts the above. Thus G, does not contain such
an element. Consider a Sylow-53-subgroup S of G. This group can not be
normalized by any element of order 5 or 7. But then again, Sylow’s Theorem
yields a contradiction.

If T is locally the dual classical generalized hexagon of order (2, 2) related
to G5(2) or the generalized hexagon of order (2, 8) related to 3D4(2), then the
stabilizer of a point p contains a subgroup H of order 3, respectively, 7, fixing
exactly 9, respectively, 21 points in T',. See [6]. Any subgroup of order 3,
respectively, 7 in G, fixing 9, respectively, 21 points of I, is conjugate to H.
The number of conjugates of H in G is therefore equal to 64/10, respectively,
820/22 times the number of conjugates in G, which is, respectively, 28 and
89856. In both cases this is not an integer, and we obtain a contradiction.

If T is locally a generalized hexagon of order (3, 3) related to G(3) or of
order (3,27), respectively, (4, 64) related to *Dy4(3), respectively, 3D4(4), then
G, contains a (root) subgroup R of order s, whose fixed points are p together
with the (s+1)(1+ st) points at distance at most 1 from some line in I';. Any
subgroup of G of order s fixing 1+ (s+ 1)(1 + st) points is conjugate R. But
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then there are (1+(s+1)(1+st+52¢2))(t+1)(1 +st+5%2)/(1+(s+1)(1+5t))
subgroups of G conjugate to R. In all three cases this number is not an
integer.

We are left with the case where I' is locally the classical generalized
hexagon of order (2,2). Suppose we are in that situation. Fix two points p
and g of . Let r be a point at distance 2 from ¢ in T',. Then G, 4 fixes a
unique other point ' say of I'y, and G 4 = Gy qr- The point r is also at
distance 2 from ¢ in [',. Let C’ be the set of {p,g,r,r'}¢. Then (P,C UC')
is a one point extension of the symplectic polar space of PSpg(2), and by
[12, 9], it is the affine symplectic space with automorphism group 2°%:Spg(2).
But then G is isomorphic to 25:G5(2)' or 2:G5(2) and T is the extended
generalized hexagon related to 2%:G5(2) on 64 points.

Proposition 3.6 If I satisfies (*)s, then it is isomorphic to the extended
generalized hezagon on 128 points related to 27:G4(2), or on 120 points related
to PSpe(2), or to the extended dual polar spaces on 256 or 2300 points related
to 23:Spe(2), respectively, Co,.

We prove this proposition in a number of steps. Obviously we have:

Lemma 3.7 If C is a circle and p a point not in C, then p is adjacent to
all, two or no point of C.

Lemma 3.8 s = 2.

Proof. 1If the local near hexagon contains quads, then I' contains extended
quads which are one-point—extensions of a classical generalized quadrangle
of order (s,ty) with s,¢; > 2. The stabilizer of such an extended quad
induces a flag-transitive automorphism group on this extended quad, and by
Proposition 2.2 we find that s = 2.

Thus suppose that I is locally a generalized hexagon of order (s,t). Let
C be a circle on the two points z and y. Consider the set S of points in T,
not on C that are collinear with y. The points in C' U § form a clique of G.
If z is a third point of C, then S is contained in I',, and each point of S is
at distance 2 from both z and y. Since § is a clique in T', the points of S are
at mutual distance at most 2 inside I',, and there is a unique point u on C
different from z,y and z such that these points in S are all collinear with u
inside I',. But, by 2.1 Gy, is transitive on the remaining s — 1 points in C,
which implies that « is the only point of C different from z, y and z. Hence
C contains 4 points and s = 2.
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A (geometric) hyperplane of a generalized hexagon is a proper subset of
the point set meeting each line of the hexagon in one or all points. A point
of a hyperplane is called deep if all lines on the point are contained in the
hyperplane.

Let p and ¢ be two points at distance 2 in G. By H we denote the
complement in T, of the set pt Ngt.

Lemma 3.9 (i) H is a geometric hyperplane of T'p.
(i1) A point of H is deep or ont — ty — 1 lines of T, inside H.

Proof. Let r be a point of p- Ng*. Inside I', the distance between p and ¢
is 3. Thus each circle on p and r contains 2 points adjacent to q. But then
each line of I', on r meets H in a unique point. This proves (i).

The number of points in H that are at distance 2 from r is the number
of points in I'. that is at distance 2 from p and 3 from ¢. This number is
(t+1)(3t —2t3 — 2)/(t2 +1). Thus, on the average, each point of H collinear
with r is collinear with 2(¢—¢,—1) points of H. The group G, 4 . is transitive
on the t + 1 circles on p and r. So each point of H collinear with r inside I,
is collinear with exactly 2(¢ —t3 — 1) points of H and on ¢ — ¢3 — 1 lines of
H. This proves (i1).

Lemma 3.10 (i) If T is locally the classical generalized hexagon of order
(2,2), then it is isomorphic to the extension on 128 points related to
27:G2(2) or on 120 points related to PSpe(2).

(11) IfT is locally the PSpe(2) dual polar space, then it is isomorphic to the
extension on 256 points related to 23:Spg(2).

Proof. Suppose I' is as in the hypothesis of (i) or (i). Then G is locally the
collinearity graph of a polar space related to PSpg(2), respectively, POF (2).
By [5] we find that G is the collinearity graph of an affine polar space obtained
by removing a hyperplane from either the P.Sps(2) polar space or the POF;(2)
polar space.

The group G is contained in the automorphism group of this affine polar
space. If the removed hyperplane is degenerate, we find that G is a subgroup
of 27:G0~(2) or 22:GOF (2) which leads to the examples related to 27:G,(2),
respectively, 23:Spe(2). If the removed hyperplane is nondegenerate, then we
find that G is a subgroup of PGOZ (2) or PGOg (2) or of 2 x PSpg(2). In the
first case we find the example on 120 points related to P.Spe(2). In the second
case, G is a subgroup of index 120 or 2.120 in PGO3 (2). By [6] there is no
such group. Finally in the last case, the graph G is antipodal of diameter
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3. The group G has index 240 in 2 x PSps(2), and induces a 2-transitive
subgroup of PSps(2) on the 136 pairs of antipodal points. However, it follows
from the information in [6] that no such group exists.

Lemma 3.11 IfT is locally the PSUs(2) dual polar space, then it is isomor-
phic to the extension on 2300 points related to Cos.

Proof. Let p and g be points at distance 2 in §G. of I". Denote by H the
complement of pt Ngt in p and by D the set of deep points in H.

Fix a line of H. There are 5 quads on this line. The hyperplanes of a
quad are subquadrangles of order (2,2) or the 5 lines through a point. If
the line contains a deep point, then all the quads on the line are either in H
or meet H in the 5 lines on that deep point. But that implies that on any
other point of that line there are 1 mod 4 lines inside H. By Lemma 3.9(z7)
all the points of such a line are deep. This clearly implies that H can not
contain deep points. Double counting of collinear pairs of points yields that
12|H| = 21(891 — |H|), from which we deduce that |[H| = 567. But then G
is of diameter 2 and strongly regular with parameters (2300, 891,378, 324).
The group G acts as a rank 3 permutation group on G.

The group PSUs(2) contains 3 classes of subgroups of index 1408. These
subgroups are isomorphic to PSU,(3):2, and they are all conjugate under
the automorphism group of PSUs(2). Each such subgroup has two orbits on
the 891 points of the near hexagon, one of length 567 whose points form a
hyperplane, and one of length 324, being the set of points in the complement
of such a hyperplane.

Let H be the PSUg(2)-orbit of H. A straightforward computation yields
that there are 567 hyperplanes in H intersecting H in 375 points and 840
intersecting it in 351 points. From the above it is clear that the graph G
is isomorphic to the graph whose vertices are p, the points of I', and the
elements of . The point p is adjacent to all members of I',, two points in
', are adjacent if and only if they have mutual distance at most 2. Two
hyperplanes are adjacent if and only if they meet in 375 points, and a point
and a hyperplane are adjacent if and only if the point is not in the hyperplane.
This proves uniqueness of G, but then uniqueness of I' follows easily.

Lemma 3.12 The residue at a point of I' is not isomorphic to the dual
classical generalized hezagon of order (2,2), or the generalized hezagons of
order (2,1) respectively, (2,8).

Proof. Suppose that I is locally the generalized hexagon of order (2,1). Let
p and ¢ be two points at distance 2 in G, and set H to be the set of points
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adjacent to p but not to q. The set H is a hyperplane of I',. Clearly there are
no lines nor deep points in H. By double counting we find 4| H| = 2(21-|H|),
and H contains 7 points. Since H contains no deep points, the graph G has
diameter 2, and is strongly regular with (k,A, ) = (21,12,14). However,
such a parameter set is not feasible, see [2]. A contradiction.

Now assume that T is locally the hexagon of order (2, 8) related to 3D4(2).
Fix some point p of I, and an element g of order 7 in G,. The fixed points
of g in I', form a subhexagon of order (2,1). Suppose ¢ is a point of T, fixed
by g. Then g € G, and it fixes p and 12 points at distance at most 2 from p
inside T'y. The fixed points of g in Iy form also a subhexagon of order (2,1)
inside I'y. In particular, the points fixed by g form a union of extensions of
the generalized hexagon of order (2,1). However, this contradicts the above.

Finally suppose that I' is locally the dual classical generalized hexagon
of order (2,2). Let (p,q,r) be a path of length 2 in the graph G. Inside
the hexagon I’y the distance between p and ¢ is 3. This implies that there
is a subgroup S of order 3 of G, fixing p and r. The group S is in S, the
conjugacy class of subgroups of G, generated by elements of type 3A (cf [6]).
Each element of S fixes 9 points of I, forming an ovoid. All points adjacent
to both p and r are fixed by some element of S in G, . Since the number of
points at distance 2 from p is less than 63.32 we find that G, , has index at
least 3 in G,. By lemma 3.9, there is a point ¢’ collinear with ¢ in ', that
is also adjacent to r. This point is not fixed by S, and there are at least 2
members of § in Gy 4. These two members generate a group isomorphic to
SL4(3) containing 4 members of S. Together with any other element of S
this group generates G,. Thus G, , contains only the 4 elements of § in this
SL3(3). The fixed points of these 4 elements are a fixed point 7 say, and all
the points at distance 3 from that point. Using Lemma 3.9 we find that the
set of common neighbours of p and r must be the set of all elements of T,
at distance 3 from /. In particular, there are 63 points at distance 2 from
p inside G, and G, induces the same action on these points as on pt. The
point 1’ is the unique point in I', which is at distance 3 from r. Consider
T... If p’is a point in ' at distance 2 from r, then, by the above, all the
points at distance 1 or 2 from p’ in I',s are also at distance 2 from r. Since
I is connected, we find that all its points are at distance 2 from r. This
implies that ' contains 1 + 63 + 63 + 1 points. Moreover, each element of &
fixes 1 +9 + 9 + 1 = 20 points. Thus the conjugacy class of S in G contains
128.28/20 elements. A contradiction.

This finishes the proof of Proposition 3.4.

Proposition 3.13 If T' satisfies ()3, then it is isomorphic to one of the
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extended generalized hexagon on 36, 162, 100, or 1782 points related to G5(2),
PSU,4(3), HJ, respectively, Suz.

We prove this proposition in a series of lemmas. Let p and ¢ be two points
at distance 2 in G. Set H to be the set of points in I'y that are not in [,.

Lemma 3.14 (i) Let C be a circle and z a point of ' not in C. Then
et NC|=0, 2 ors+1.

(ii) Each line of T, meets H in 0, s — 1 or all points.

(iii) Any point of T', outside of H is on t3 + 1 lines of T, meeting H non-
trivially.

Proof. The proof is similar to the one of 3.9(z), and is left to the reader.

Lemma 3.18 The group G acts as a rank 3 permutation group on G. The
graph T' is strongly regular with parameters k = (1 + s)((1 + t2)(1 + st) +
s2E =)/ (ta+1), A =s(t+ 1)+ s3(t — t2)/(ta+ 1) and p =k — (82 —
D2+t +t2+1)/(t2+1).

Proof. We show that the diameter of G is 2. Then the first part of the
lemma follows immediately.

Let p and ¢ be two points at distance 2 in G, and let r be a point adjacent
to ¢, but at distance 3 from p. Then all points in I'y that are collinear with
r or at distance 3 from r are contained in the complement of pt N ¢*. Fix
a point u collinear with both p and ¢g. Then this point is at distance 2 from
r inside [',. Since ¢, < ¢, there is a line in I’y on u inside pt N ¢, see the
above lemma. This line contains a point at distance 1 or 3 from r inside Iy,
contradicting that 1 N pt N ¢t is empty.

The valency of the graph G equals the number of points in the local near
hexagon, A equals the number of points at distance 1 or 3 from a given point
in the local near hexagon. So k and A are as given.

Fix two points p and ¢ at distance 2 in G, and let r be adjacent to both
p and g. Inside ', we see that there are ¢, + 1 circles on r and p meeting ¢*
in 2 points, while all other circles meet ¢* in all points but p. Fix a circle on
p and r whose only point not in ¢* is p. This circle is a line I of T,. By the
above we see that there are (¢; + 1)(s? — 1) points of I', at distance 1 from
[ that are not in ¢*. For each point r* on [ the set of points at distance 3
from r' and not in ¢t is the set of points at distance 3 from p and 2 from ¢
inside I'y.. There are (s —1)s(t — t2)(t + t2 + 1)/(t2 + 1) of such points. This
implies that there are ((s +1)/s)(s — 1)s(t — t2)(t +t2 +1)/(t2 + 1) points at

11



108 CUYPERS: Extensions of buildings of type G5 and C}

distance 2 from I not in g*. Hence k —p = (s2 = 1)(#2 +t +t2 + 1)/(t2 + 1).

Lemma 3.16 T’ is an extension of a generalized hexagon of order (2,1),
(2,2), (4,1) or (4,4).

Proof. The only parameter sets (s,t5,¢) passing the feasibility conditions
for the strongly regular graph G (see [2]) are (2,0,1), (2,0,2), (4,0,1) and
(4,0,4).

Now we can finish the proof of Proposition 3.13 in a way similar to the
proof of Lemma 3.11. We will only cover the case where I' is an extension of
a generalized hexagon of order (4,4). The other cases are left to the reader,
who can find detailed analyses of these cases in [8]. Thus suppose I' is an
extension of the classical hexagon of order (4,4) or its dual. We show that
the graph G is unique up to isomorphism, which clearly implies uniqueness
of .

By Lemma 3.15 the graph is strongly regular with parameters (k, A, ) =
(819,1040,1050). Let p be a point of I' and G, the stabilizer of pin G. Then
G, is isomorphic to G2(4) or Go(4):2. The group G, fixes p, is transitive
on the points in I', and has a unique orbit of length 416 on the remaining
points of G, that are all at distance 2 from p. The group G, contains a unique
conjugacy class of subgroups of index 416, these subgroups are isomorphic
to HJ, respectively, HJ:2. Such a subgroup has two orbits on the points of
the classical generalized hexagon of length 525 and 840, and two orbits on
the point set of the dual classical hexagon of length 315 and 1050. Fixing an
orbit O of size 1050 on the points of the dual classical hexagon, there are 315
of such orbits in O = O’ intersecting it in 806 points and 100 intersecting
it in 788 points.

Let ¢ be a point at distance 2 from p, then the group G, ¢ is transitive
on the 1050 points in pt N ¢lt. We conclude that T, is the dual classical
hexagon related to G3(4). Moreover, we can identify the graph G with the
graph whose point set consists of p, the points of I'y, and the set of orbits
of length 1050 in O. The point p is adjacent to the points of I';, two points
of I', are adjacent if and only if their distance is 1 or 3 in I'p, a point of T},
is adjacent to an orbit of O if and only if it is in the orbit, and finally two
orbits are adjacent if and only if they intersect in 806 points. This shows
uniqueness of the graph G and hence also of T'.
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DISCONNECTED LINEAR GROUPS
AND RESTRICTIONS OF REPRESENTATIONS

BEN FORD

1. INTRODUCTION

In [1, 2, 9, 10, 13), Dynkin, Seitz and Testerman classified the maximal
closed connected subgroups of the simple algebraic groups over an algebraically
closed field K of characteristic p > 0. The hard part of their analyses, for
subgroups of the groups of classical type, concerns an irreducible, closed, con-
nected subgroup G of SL(V') for some K-vector space V. They determine ex-
plicitly all possibilities for closed connected overgroups Y of G in I(V) (where
I(V) = SL(V),SO(V), or Sp(V) depending upon the form on V preserved by
G); the results appear in tables giving the high weights of the modules Vig
and Vly.

The question of inclusion relations among irreducible subgroups of SL(V), in
addition to having implications for the subgroup structures of classical groups,
is of interest in its own right. In this paper we present some recent results
concerning this question when we allow subgroups that are not connected
(the full proofs may be found in [3, 4, 5]). Specifically, in Sections 2 and 3 we
discuss the structure and some of the methods of the proof of Theorem 1.

Let G be a non-connected algebraic group with simple identity component
X. Let V be an irreducible KG-module with restricted X-high weight(s).

Theorem 1. Let Y be a simple algebraic group of classical type such that
X <Y < SL(V) and Vly is irreducible with restricted high weight. Then
Y = SO(V), Y = Sp(V), or (X,Y,V) appears in an explicit list, with the
embedding X — Y and the Ligh weights of V|y and V|x identified.

As is true for connected G, there are surprisingly few examples of such
triples.

The problem one faces when approaching this problem is how to limit the
embeddings X — Y which must be considered. In our case, since ¥ is assumed
to be of classical type, it has a natural module W. The action of X on W
provides the information we need. The proof of Theorem 1 differs greatly
depending on whether W|y is reducible ([4]) or irreducible ([5]).

Note that if V|x is irreducible, then we are back in the connected case dis-
cussed above, with the extra requirement that X have an outer automorphism

1991 Mathematics Subject Classification. 20G05, 20C30.
Supported in part by the National Science Foundation
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which acts on V. We can examine the list obtained by Seitz in [9] and deter-
mine when this condition is satisfied; this gives several triples (X,Y, V). So
we assume below that V|x is reducible.

In Section 4 we discuss an interesting application of some of the methods
developed in this study to a problem in the representation theory of the sym-
metric groups.

2. WHEN W 1S AN IRREDUCIBLE X-MODULE

We assume we have a triple (X, Y, V) as in Theorem 1, with W|x irreducible.

Assume for this description that X is not of type D4 (the argument is much
the same in that case, but somewhat more complex) and that G # X (the
case G = X is the “connected” case discussed above). So G = Aut(X), as
except for D,, simple algebraic groups have at most one non-identity outer
automorphism up to conjugation by a group element; and X has type A,
D,, or Eg. We let t be a representative in G of the non-identity element in
G/X. Then let Bx > Tx be t-stable Borel and maximal toral subgroups of
X, respectively (see [11, Theorem 7.5]). We let {—f,...,—fm} denote the
simple roots of X relative to Bx and Tx, so we are using the opposite of the
standard convention for Borel and parabolic subgroups of X; we use similar
conventions for parabolic subgroups of ¥. The high weight of W|x will be
denoted 6.

As we are assuming that V|x is reducible and X # D,, we have V|x =
Vi @ V5, with V; and V;, non-isomorphic irreducible X-modules.

The proof in the case W|x irreducible is based on a particular construction
of a parabolic subgroup Py of Y containing By and satisfying some other nice
properties.

The Tx-weights which appear in W have the form é — ¥ ¢;5; for integers
e; > 0. We will call T"e; the level of this weight.

Thanks to the results in [12] and [8], which tell us that weights which appear
in the Weyl module W(§) also appear in W, we know which weights appear
at each level. We let

W; = @ w,.

~ of level ¢
Then we have a flag
W=@pW.>pW,>--->0
i>0 i>1
in W, and we let Py be the stabilizer in Y of this flag. Then Bx < Py and
Py is a parabolic subgroup of Y.

Now we investigate instead the restriction of V to Py and to Bx. The
parabolic subgroup Py is t-stable, and we find that [V, Ux] = [V, Qy] since ¢
interchanges the Tx-high weight spaces in V; and V, (Ux, Qy are the unipotent
radicals of By, Py respectively). Thus

VIIV,Qv] = Wi/[Wi, Ux] & V2/[V2, Ux]
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has dimension 2. But this implies that one of the simple factors of the derived
group of a Levi factor Ly of Py must be of type A, (since V/[V,Qy] is an
irreducible L},-module by 2.1 of [9]). In other words, one of the spaces W;
must have dimension 2. Combinatorial arguments then give strong conditions
on the high weight § of W|x.

Thus we have established a strong connection between V and W, severely
limiting the embeddings X — Y that we must consider.

Having ruled out most embeddings, we deal with those that remain by
performing much the same “level” construction as above, except we begin
with a parabolic subgroup Px and define the Px-level of the weight 6§ — 3" e; 5
to be Y e; where the sum is taken over those ¢ such that f5; is not in the
root system of the Levi factor of Px. Choosing our parabolic subgroups Px
judiciously (and using some ad hoc methods for the few remaining cases), our
list of triples (X,Y, V) is arrived at.

The most interesting example that arises here is the following (labels of 0
are omitted):

XY Wlx Vi Viy char(K)

1
3 1 1.1 1 3
Az Dy 26 e———eo—e D o——o—s ._.,_< p#2,3,5,7

3. WHEN X ACTS REDUCIBLY ON W

We assume we have a triple (X,Y, V) as in Theorem 1, with W|x reducible.
It is here that the infinite families of examples appear. The hardest part of
this analysis is the case X = D, < B, =Y, and the methods used in that
case are somewhat simpler to describe in the context of a different problem
to which they are applicable; this is done in the next section. Here we give
a brief description of how we get to the point where those methods become
applicable.

Let {oy,...,0,} and {A1,..., Az} be the sets of simple roots and funda-
mental dominant weights, respectively, of ¥ = B,. Let V be an irreducible
Y-module with restricted high weight A = ¥ a;A;. Then let D,, be the sub-
group of B, generated by the root subgroups corresponding to long roots, and
let t € B, be a representative of the Weyl group reflection s,,,.

Each of the sums

V(i) = > v,

u=A=biay—-=bp_jan_1—ian

is a Dp-submodule of V. So if we hope to have V|p,(y irreducible, at most
two of these can be non-zero. It is not hard to see that it must be exactly two
(else V|p, is irreducible), and that this implies a, = 1.
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Given this condition, the question becomes: “When are V(0) and V(1)
irreducible as D,-modules?” It is to this question that the methods outlined
below give an answer. The result is the setup below, with the coefficients a;
satisfying the congruences

git+a;=1—3j (modp)

whenever a; and a; are non-zero coefficients with only 0’s between them and
t < j <n;and
20, =-2(n—-1)—-1 (mod p)

when q; is the last non-zero coefficient before a, = 1. Recall that V|x =
Vi ® V,, with V; and V; irreducible X-modules, interchanged by the graph
automorphism.

X Y Wk Vilx Viv char(K)
Gn-1 e a 1
A
D, B, usual uz... .3_.2._)1_. p#2
Qn-1 + 1

4. REPRESENTATIONS OF THE SYMMETRIC GROUPS

In [6], Jantzen and Seitz conjectured that an irreducible representation M
of Sym,, is irreducible for Sym,,_, < Sym,, if and only if the p-regular partition
A= (AT, ..., A7) of n corresponding to M satisfies the congruences

)\; - /\,‘+1‘+ m;+mi = 0 (mod p)
Note that this is just the condition that the hooks pictured here

Ai

m;

mMis1
Aig1

have length a multiple of p.

This conjecture translates via the Schur functor into a conjecture about re-
strictions to SL,_; of irreducible SL,-representations. Jantzen and Seitz prove
the “if” direction of this translation. and methods similar to some of those
used in the work described above. combined with a theorem of A. Kleshchev
([7]), can be used to prove the “only if” direction.
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Let {ai,...,an} be the set of fundamental roots of the root system ¥ =
Z(SL,) (with respect to a fixed Borel subgroup B and maximal torus T of
SL,). The fundamental dominant weights of T are denoted Ay,...,As. Let
V = V(A) be a non-trivial irreducible restricted high weight module for SL,
of high weight A = ¥ a; ).

The maximal parabolic subgroup of SL,, corresponding to o, € II = II(SL,,)
is denoted P, and P = QL is its Levi decomposition with respect to B and T.
So L' = SL,_;. Welet V! = @V, with the sum taken over those u = A—Y b;;
with b,_; = 1. Let v* be a non-zero T-high weight vector in V.

To prove the conjecture, it suffices to prove that if V! is an irreducible
L'-module, then the congruences

gi+a;+j—:=0 (modp)

hold for all pairs of successive non-zero coefficients (a;, a;). We do this working
over the Lie algebra of SL, (which is legitimate as A is restricted). We use
the standard basis {e4, fo, hila € ZT, 1 <1 < n — 1} for the Lie algebra, and
we let Vi; be the subspace of Vi_(a+...e;) Spanned by all elements other than
fart-pav* of the form

+
fa.-+---+a_, fﬂ'_1+1+'"+0'_11 . faj(m)“.......,.a,v N

with i < j < -+ < ™ < L. To ease the notational pain, we henceforth write

f[i:j] for f“i+"-+a,--
The L'-module V! has a filtration

0 (f[k,n—l]v+> < <f[k,n—l]v+> f[k-l,n—l]v+)
{ften-v", fe—1n-130", fig-2,m-1j0 )

<V

IANIA DA

where qa;, is the “last” non-zero coefficient of A, i.e. ¢ = 0 for every | > k.
Since V! is irreducible as an L’-module, this filtration has only one member,
ie. fiin-jvt € (fixn-yv?) for all i < k. In particular, fia—yjvt € Vj,y for
all : < k.

Through a series of lemmas, we show that this implies

(1) If i < k, then f[;,k]v"' € Vig.

(2) Let a;, am be non-zero coefficients with m > ¢; let a; be the last non-
zero coefficient before a,,. Then f.qvt €V, foralli <r <

(3) With a;, am as above, if fimvt € V., for all i < r < m, then
fu.gvt € Vij, where a; is the first non-zero label after a;.

These facts imply that fi;;jv* € Vi; for any pair of successive non-zero

labels a; and ¢;. Assume we have such a pair. Then the A — (e; + - - - + &;)-
weight space is spanned by {Fivt = fugfurgvtli <1<} U {fugvt} So
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fiigvt € Vi ; if and only if there is a relation

i-1
0= f[.-,,-]v"' + }: blﬂv+.
The vector on the right-hand side of this equation is not a high weight vector,
so it is 0 if and only if it is killed by eg for every positive root f.
We apply e,, to the equation for i <! < j, and obtain a series of equations
which reduce to b; = - -- = b;_; = —1/a; and, as we wished, ;l;(a.,-+1)+;1;(j—
t—1)=-1l,ora;+a;,=i-j.
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PRODUCTS OF CONJUGACY CLASSES IN ALGEBRAIC
GROUPS AND GENERATORS OF DENSE SUBGROUPS

NIKOLAI L.GORDEEV

Abstract. The survey of results contained in [G1] is given here. We consider
two connected problems in algebraic groups. The first is the decomposition
of groups into products of conjugacy classes. The second is the problem
on the minimal numbers of generators of a dense subgroup from a given
conjugacy class. We show, also, that both problems are connected with
some questions arising from the theory of actions of algebraic groups on
algebraic varieties.

1. MULTICLASSES OF ALGEBRAIC GROUPS
Let G be a group and Cy, ... , Oy be conjugacy classes of G. The product

M, =CCy..Co={q1g2--.9x |9: €Ci }

is called a k-class (if k > 1 we suppose C; @ Z(G)). Any k-class we also call
a multiclass of G. When ¢y = Cy = ... = (% = ' we will also write C*
instead of M. There are some questions in group theory connected with
multiclasses (see, for instance, [AH]). One of them is when G = M, for
some M.

Our interest in multiclasses is inspired by the following problem con-
nected with actions of algebraic groups on algebraic varieties. Let an alge-
braic group G acts regularly on an algebraic variety X. Sometimes we need
to know or, at any rate, to estimate the number corank g = codimension
of the subvariety of fixed points of g, where ¢ € G (sometimes we need to
know corank g for a given element y and sometimes to estimate coranks for
some set of elements). First of all, we can see that coranks are the same
for the elements of a conjugacy class. Let C be a conjugacy class of the
group G and g € C. Suppose that (¢ = C* for some k. Then any element of
G can be represented as a product gy ga ... gr where all elements g1,...,9z
belong to ' and, hence, have the same corank. In cases when the action
is “good” (see 5. Examples of c-actions) we can apply the inequality for
the codimension of the intersection of subvarieties to the intersection of the
subvarieties of fixed points of elements g;. Thus, corank g’ < kcorank g
for every ¢’ € G. Suppose we know the corank for some element go € G.
Then corank g >(corank go)/k. Thus, if we can decompose the group G
into the product C* we can estimate (under some conditions) coranks of el-
ements from the class C through the number k and some known corank go.
To calculate or even to estimate the smallest number k (if it exists) such
that G = C* is rather difficult. It is more easy to calculate this num-
ber “up to Zariski closure”, that is, to calculate the number ! such that
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G = C7 where €7 is the closure of ¢! with respect to Zariski topology. One
can see that if G = C7 then C? = ( (it is a simple fact following from
the elementary theory of algebraic groups). Therefore, k < 2!, and, if we
know I, we can take the inequality corank ¢ > (corank go) /2! instead of
corank g > (corank go) /k. In fact, we can use the inequality corank g >
(corank gg) /I if we consider more special actions (say, actions on linear or
projective spaces). There is a different approach to the same problem which
is also connected with a products of conjugacy classes. Let we know that r
elements ¢,,...,9, € C generate a gense subgroup (with respect to Zariski
topology) in (C). Suppose also (") = G. Since the action G on X is regu-
lar, X{9197) = XG If we can apply the inequality for the codimensions
of intersections of {X¥:}, then we can obtain the inequality corank g >
codim X% /r. On the other hand, the smallest number r, such that there
are r elements from the class C' generating a dense subgroup of G, could be
estimated (for the semisimple groups) through the smallest number k such
that C* = @ (see 4, Theorem 3). Thus, the generating of dense subgroup
by elements from the given class C' (where (C'} = (), the decomposition &
into C* (up to closure) and the estimate of coranks of elements of C are con-
nected. In fact, using this connections we can enlarge the area of applying
these constructions (see 5, Examples of ac-actions and Theorem 5).

Thus, the problems of estimating of coranks and the problem of gener-
ating of dense subgroups by elements from the same conjugacy classes lead
us to the problem of the representation G = C'*. This, in its turn, rises the
interest to the behaviour of affine varieties like C*. The natural step here is
to consider the more general type of affine varieties, namely, M} (e.g. the
closure of a multiclass of G). Except the analogue of the traditional ques-
tion when G = M (see 2, Theorem 1), there are natural questions on the
structure of M}, the law of multiplication, etc. The description of the semi-
group generated by the semisimple classes is SL,(K) (see 3, Theorem 2)
shows, for instance, that we have here rather rich and slim structure.

The use of the closures of multiclasses has already given the possibility to
carry out some results on linear actions to some non-linear cases (see 5, The-
orems 6 and 7). We hope that the investigation of multiclasses in algebraic
groups which is the self-interesting problem give us some more possibilities
to study non-linear actions.

Here we will consider algebraic groups over an algebraically closed field
K of characteristic zero.

2. COVERING NUMBERS OF SEMISIMPLE ALGEBRAIC GROUPS

The smallest integer k such that G = C* for every conjugacy class C
which generates G is called the covering number of G ([AH]) and denoted
by en(G). The smallest integer k such that G = M, for every k-class which
consists of classes C), ..., such that (Cy) = ... = (Ck) = G is called the
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extended covering number and denoted by ecn(G) ([AH]). In the case when
G is an algebraic group we can define “topological” covering and extended
covering numbers in the following way

ei(G) = min{k | C* = G for any class C such that {C) = G}

ecn(G) =min{k | C1C2...Ch =G
for all classes C,... ,C} such that () =...={C}) = G}.

It is easy to see that
en(G) < een(G), Ti(G) < &t (), en((F) < 2en(G), een(G) < 2een(G).

Moreover, for a perfect algebraic group & (that is, G is connected and
G = [G,()) it is easy to show ean((¥) < dim G.

THEOREM 1. Let G be a semisimple algebraic group over afield K (K = K,
char K = 0), let r be the maximum of the ranks of simple components of
G. Then

@i(G) < 2r,een(G) <2r + 1.

Remark. If G does not contain simple components of types Bn, F4,G2
and if Cy,...,Cy are semisimple conjugary classes such that (C)) = ... =
(Cy) =G then O\C, ...C =G ifk>r+1.

The proof of this theorem is based on the consideration of the action of G
on G by conjugation. Here we have the algebraic factor /G and the factor
morphism 7: G — G/G (see [Kr], Ch. II). Moreover, there is a natural
isomorphism between G/G and T/W where T is a maximal torus and W is
the Weyl group of G ([SprSt], §3). Thus, the dimension of G/G is equal

to the rank of G. Further, it is easy to see that M) = G if 7(M}) = G/G.
Now the proof can be obtained by the estimating of the growth of dim 7( M},)
with respect to k.
Conjecture. cn(G/Z(G)) < 2r, een(G/Z(G)) < 2r + 1 (that is, the esti-
mates of theorem 1 are true for the covering and extended covering num-
bers). Moreover, we suppose that the assumption charK'=0 could be omit-
ted.

It would be interesting to obtain the estimates for cn(G), ecn(G) in the
case of Chevalley groups, and for “topological” covering numbers in the case
of Lie groups over (¢ and R (with respect to the usual topology).

3. THE EXAMPLE: SL,(K)

Here we consider the multiplication of semisimple conjugacy classes in
SL,(K). The description is given in the language of Young diagrams.
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Let p,g < n; Ay = (p1,.--,Pk), 7¢ = (q1,---.,¢e) be partitions where
nz2p22...2ppPp=ptp++p, 02406020 24,49=
@1 +g2+ - +g.. Let

@) “‘l ............ I [ I pl

a9 asz | ------ ] Q) I P2

a4 =

Lo [T ] 2

be the corresponding Young diagrams with a;,b; € K, a;,b; # 0, a; # as,
b Ab ifiFs, j#T.

Suppose p) > q1. In all cases, except £ = e =2, p = ¢ = n, we define

ar by | iy I --------- (l-lle sSi=pr+qa-—n

a2 | e l(leg sa=pr+gz—n
a-b=c= :

arbe | lalbtl st=pr1+q@—n

if pr + @1 —n > 0 (c is a right corner of b “corrected”by a;; here s; > 0,
P14+ ge41 —n < 0), and

a-b=(0)
if py + ¢, —n <0. In the case k = e = 2, p = ¢ = n, we define
a-b={e,d)

where ¢ is obtained by the same rule as above and § = ayayb,b,. Let
Mla) = {g € SL.(K) | rank(g — a;1) < n - p;},
M[(0)] = SL.(K).
If n— p=21, we define
M[{a,8)) = M[a]N{g € SL,(K) | det(g — z1)
= (=" f[(a: —ai)* ]_L_[(:n2 +¢ejz + 68) for arbitary €; € K}.

i=1 i=1
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It is easy to see that M[a], M[{a,b)] is closed, connected and invariant under
conjugations. (If p = n, M[a] is a conjugacy class of SL,(K).)

THEOREM 2. Let My be a product of semisimple conjugacy classes in
SL,(K). Then M} coincides with some M[a] or M[({a,&)]. Moreover,

Mla|M[b] = M[a -],

M({a,8)]M[b] = M[a - )],
M[{a,8)]M[(b,€)] = M[a - b].

The first step of the proof here is to show that the closure of the product
of any two semisimple conjugacy classes coincides with SL,(K) if the sum
of the maximal multiplicities of the eigenvalues of both classes less or equal
to n and if one of them has more than 2 different eigenvalues. This can be
proved by induction with respect to nn. The next step is the consideration
of a product of two elements in “general position” from two semisimple
conjugacy classes. Then we prove our statement, comparing the results of
both steps and using the well known theorem of Blichfeldt on the groups
generated by matricies with two eigenvalues ([Bl]).

4. MULTICLASSES OF SEMISIMPLE ALGEBRAIC GROUPS
AND DENSE SUBGROUPS

Let G be a semisimple algebraic group, and ' be a conjugacy class of

G\ Z((5).We define

genC' = min {n | there exist elements ¢,...,g, € C such that the group

{91,--- ,9n)is dense in {C')},
E(C) = min{m | C™ = (C)}.
THEOREM 3. k(C) < genC' < k(C) + 1.

The first inequality can be proved in the following way. We consider the
morphism

Q:GxGx---xG@—=G
N—— —
k factors

(where k = k(C")) defined by the formula
k k-1
O((z1,...,2)) = (H J:,'h.,'.’c;l) H h;_lj
i=1 3=0

where hy,...,hx € C are elements in “general position”. Here we have
ImO© = C*hg'hg!, .. k7', Thus dimIm® = dimC*. Therefore it is
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enough to prove dimIm © = dim G. It can be done by the consideration of
the differential d© (in the point (1,1,...,1)). The second inequality follows
from two facts. The first is the existence of an element g € C* such that
g¢? is semisimple and regular if C* = G. The second is {g,h) = G for some
hedC.
Remark. In fact, we have more general results on multiclasses of different
classes and their connections with dense subgroups.
We can also obtain some estimates for the minimal number of generators
of dense subgroups from a given conjugacy class in the case of perfect groups.
Let H be a perfect algebraic group (that is H is connected and [H, H] =
H), G = H/R.(H) where R,(H) be the unipotent radical of G, V =
R.(H)/[Ru(H), Ru(H)). The action (by conjugation) of H on Ry(H) de-
fines the structure of G-module on V. Let V; be the set of irreducible
components of G-module V. Denote by (V;, V) the multiplicity of V; in V.
We put
{(Vi, V)
dim V b
n(H) = max{n;}.

n=mmn{ne€Z|n>

The proof of the following theorem can be done by the reduction to the
case [Ry(H), Ry(H)] = 1 and by the consideration of G-module V.

THEOREM 4. Let Q C H be a conjugacy class of H and (' be the image of
Q in G. Suppose (C) = G. Then

gen Q < (gen C)Y(n(H)+1).
5. APPLICATIONS
Let G be an algebraic group which acts regularly and faithfully on an

algebraic variety X (we suppose that X is irreducible and separated). The

number
min(G, X) = min {corank g | g € GG, g9 ¢ Z(G)}

where
corank g = dim X — dim X7,

X9 = {o € X | g(c) = 2}

is one of the characteristics of the action. In particular, this number can play
an important role in invariant theory (see [G2]). Here we use the results
mentioned above to estimate min((7, X) in some cases. Let Y,Z C X. We
define

YaxZ={geG@|YNy(Z)+#}.

We say that the action of G on X is alinost centred or ac-action if
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for all subgroups H, F < G such that
codim X¥ + codim XF < codim X€

(here U™2* is the union of irreducible components of U which have the
maximal dimension; if U = §§ we put dim U = 0, codim U=dim X). We
say that the action G on X is centred or c-action if

dim (X #)™>* (X Fym*¥) > dim X# + dim XF - dim X

for all subgroups H,F < (. Obviously, every centred action is almost
centred.

EXAMPLES OF c-ACTIONS.
(1) X = A}, (affine space) and the action of G is analytically equivalent

to a linear action.
(2) X is an algebraic group and G < Aut X.
(3) X = P(V) where V is a G-module.

EXAMPLES OF ac-ACTIONS WHICH ARE NOT c-ACTIONS.

(1) X =A;, G=Aff A},

(2) Let G = SL,(C), Y = SL2(C)/N be the homogeneous space cor-
responding to the subgroup N = Ng(T), X =Y x C. Let G act
on X by the formula g(y % ¢) = gy x ¢. Then the action is ac but
not c-action.

In fact, ac and c-actions are “near”to affine and linear actions correspon-
dently with respect to the behaviour of intersections of subvarieties X
where H < G.

Suppose that the action of G on X be a c-action. Let C be a non-central
conjugacy class of G, g € C, (C) = H < (. Tt is easy to see that

corank g > codim X /gen C.
If, in addition, X# = X9 for every H G, H ¢ Z(G), then
(* corank g > codim X¢/gen C.

The resembling inequality can be obtained for ac-actions of semisimple
groups on smooth varieties. Namely, using the inequality for the codi-
mension of an intersection on a smooth variety and Theorem 3 one can
prove.
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THEOREM 5. Let the action of a semisimple group G on a smooth algebraic
variety X be an ac-action. Let C* = G for some conjugacy class C of G
and let g € C. Then

corank g > codim X% /(k + 1)
(if X6 = @, we put dimX¢ =0).

Remark. We can take the smallest k such that C* = G. Then k < gen C' <
(k + 1) according to theorem 3. Thus, the inequality of theorem 5 is not
much worse than (*).

Comparing theorem 5 and 1 we obtain

THEOREM 6. Let the conditions of theorem 5 hold. Suppose X = X for
every non-central normal subgroup H a4 G. Then

min(G, X) > codim X /(2r + 1)
where r is the maximum of the ranks of the simple components of GG.
Using the inequality of Theorem 6 we can obtain

THEOREM 7. Let the conditions of Theorem 6 hold. Suppose that the
stabilizer of general position in X exists and not trivial. Then

codim X ¢ < (dint1 G — rank G)(2r + 1).

Theorems 6 and 7 are the generalisations of the results of E.Andreev and
V.Popov which were obtained in the case when X is a G-module V or P(V).
([AP]).
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Monodromy Groups of Polynomials
Robert M. Guralnick! and Jan Saxl?

1. Introduction

Let F be a field of characteristic p and let f(z) be a polynomial in F[z]
of degree n. Assume that f is not a polynomial in z?; then F(z)/F(f(z))
is a finite separable extension. Let K be the Galois closure of F(z) over
F(f(z)). We are interested in the Galois group of K/F(f(z)) — it turns out
there are severe restrictions on the possible groups.

We first refine the problem. We say f(z) is indecomposable (over F') if
f is not the composition of two nonlinear polynomials. It is an easy exer-
cise (using Liroth’s Theorem) to show that this is equivalent to saying that
F(z) is a minimal field extension of F(f(z)). Let G be the Galois group
(or arithmetic monodromy group) of K/F(f(z)). We can pass to the al-
gebraic closure F of F and consider the extensions over F'. Let G be the
corresponding Galois group (geometric monodromy group) . Note that G is
normal in G with quotient isomorphic to the Galois group of F//F, where F’
is the algebraic closure of F in K. Let G, denote the subgroup of G fixing
z (and similarly for G;). Then G (and G) act transitively on Q, the set of n
conjugates of z in K.

We can view f as a map from P! to P'. The fact that it is a polynomial
just asserts that f~(co) = 0o

Let H be the (geometric) decomposition group in G for a prime of K
over co. Since we are now in the case of algebraically closed residue fields,
inertia groups and decomposition groups coincide. In the characteristic zero
situation, H is cyclic. We are mainly interested in the case where K has
characteristic p > 0; then H/O,(H) is cyclic, where O,(H) is the maximal
normal p-subgroup of H (see [S, IV.2 Corollaries 2 and 4]).

The fact that f~!(co) = oco implies that H acts transitively on the
conjugates of z ([S, 11.3 Theorem 1 and Corollary 4]). Thus, we have the
following group theoretic situation:

1. G is a primitive subgroup of S,,.
2. H is a transitive subgroup of G with H/O,(H) cyclic.
In this article we classify all the possibilities of G and . The prob-
lem remains to determine when this group theoretic data corresponds to a
polynomial. We have not yet used the fact that the field F(z) has genus
zero. This is not so useful in positive characteristic, but is very powerful in

! partially supported by NSF
2 both authors thank the Italian government for its support of the Como
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characterisitic zero. Indeed, for F algebraically closed of characteristic zero,
Feit [Fe] found essentially all possibilities (see also [M2]). The point is that
in characteristic zero the Riemann-Hurwitz formula and Riemann’s existence
theorem allow one to convert the existence of such an f completely to a group
theoretic problem. Moreover, in characteristic zero, H is cyclic. This implies
that either G is doubly transitive or n is prime and ( is metabelian. In either
case, there is a quite manageable collection of groups to consider.
Our main result is the following:

Theorem A. Let p be a prime. Let G be a primitive subgroup of S,
containing a transitive subgroup H with H/Op(H) cyclic. Then one of the
following holds:
(i) n=p%
(it) F*(G) is simple and is given in Theorem 3.1;
(i) F*(G)=L x L, n = 4p?, p is odd and L is given in Theorem 4.2;
(iv) F*(G) = PAF(®) & La(p%) x La(p%), n = p°(p* — 1)/(2,p — 1) for
some a with p® > 4;
(v) n=risprimeand G = 1,orn =4 and G=S,.

All cases above do arise group theoretically — we do not know which
groups correspond to polynomials. Only a few are known to occur. It is well
known that S, and A,, do occur. Also, the affine groups which are subgroups
of PGL,(F) do occur (see §4). Abhyankar [A1, A2, A3] has produced many
polynomials with simple groups as monodromy groups. The theorem shows
that most simple groups cannot be obtained as Galois groups of the Galois
closure of F(z)/F(f(z)) with F finite or algebraically closed. In particular,
exceptional Chevalley groups cannot occur. This is in contrast to a recent
result of Raynaud [R] that any group generated by its Sylow p-sugbroups can
be realized as the monodromy group of an unramified covering of the affine
line (this was first conjectured by Abhyankar; Harbater [H] has extended the
result to other affine curves).

The primitive groups of degree p® have been classified — we discuss them
in §4. These include the primitive affine permutation groups. In particular,
we do obtain some results about when affine groups do occur.

The geometric form of the theorem can be stated as follows. Since we
never use the polynomial hypothesis, we state this as:

Theorem B. Let F be an algebraically closed or finite fleld of characteristic
p> 0. Let X and Y be smooth, projective, nonsingular curves defined over
F. Let ¢ : X — Y be a branched covering of degree n defined over F.
Let G be the arithmetic monodromy group of the cover and G the geometric
monodromy group. Assume that the covering is minimal (i.e. does not factor
through an intermediate curve over F') and that for some F-point yg € Y,
l¢~*(yo)| = 1. Then one of the following occurs.
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(i) n=p%
(if) F*(G) is simple and is given in Theorem 3.1;
(i) F*(G) =L x L, n = 4p??, p is odd, and L is given in Theorem 4.2;
(iv) F*(G) = PQ}(p*) = La(p*) x L2(p®), n = p*(p** — 1)/(2,p — 1) for
some a with p® > 4;
(v) n=risprimeand G=1,orn=4and G = 5.

We mention two related problems. A polynomial f(z) is called excep-
tional over F if every irreducible factor ¢(z,y) := (f(z) - f(¥))/(z — y) in
F|z,y] factors further over F. If F is a finite field, these polynomials turn out
to be permutation polynomials (i.e. are bijections as functions on F'). More-
over, any permutation polynomial of a sufficiently large field (compared to
the degree) is exceptional. The group theoretic interpretation of this prop-
erty is that G, stabilizes no nontrivial orbit of G;. See [FGS] for further
details. In [FGS, 13.6 and 14.1], the following result was proved:

Theorem. [FGS] Let p be a prime and f an indecomposable exceptional
polynomial of degree n over the finite field F, of characterisitic p. Let G be
the arithmetic monodromy of f. Then one of the following holds:

(a) G is an affine group and n = p%;

(b) G is metabelian and n is prime with (n,q—1) =1;

(¢) p<3, F*(G) = La(p®) witha > 1 odd and n = p*(p® — 1)/2.

In particular, the conjecture of Carlitz was proved — an exceptional poly-
nomial over a field of odd characteristic has odd degree. Indeed, if F = F,
has characteristic > 3, then an exceptional polynomial has degree relatively
prime to ¢ — 1 (this stronger version was conjectured by Wan and is still
open in characteristic 2 and 3 — all that remains to verify the conjecture is
to consider polynomials associated with the groups in (c) above). It is not
difficult to obtain this result as a Corollary to Theorem A (using the methods
developed in [FGS]).

Cohen [Co] and Wan [W] also obtained certain results about exceptional
polynomials. In particular, [Co] also used group theoretic tools to study the
problem. Fried [F1, F2] had indicated that group theoretic ideas would prove
useful in this and related problems. Miiller [M1] showed that in fact the first
group in (c) above for p = 2 does correspond to an exceptional polynomial of
degree 28. Recently Cohen and Matthews [CM] have produced exceptional
polynomials for each group in that family in characteristic 2.

In fact, [FGS] does not use the genus zero hypothesis (and neither do
we) and so in fact the same result was proved for ‘exceptional’ covers where
f~}(00) = 0co. Let X and Y be smooth projective curves defined over F,. A
cover ¢ : X — Y is called exceptional if {(u,v) € X x X|p(u) = p(v),u # v}
has no absolutely irreducible components defined over F,. If Y has genus
zero, then this implies that for infinitely many ¢, X has exactly one Fy point
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over each Fy: point of Y. It would be interesting to classify the exceptional
covers without the condition at co. We hope to address this issue in the
future. Fried [F3] has obtained results about constructing exceptional covers.

The second problem involves indecomposability. Let F be a finite field.
If f(z) € F[z] is indecomposable over F, can it decompose over F'? It was
shown in [FGS, 4.1] that this can only happen if the degree of f is divisible
by the characteristic. Such examples were given in [FGS, §11] with affine
groups (the polynomials have degree p® for any a > 2). Miiller (see [FGS,
11.5]) produced an example of such a polynomial of degree 21 (over F7). The
main result here is:

Theorem C. Let F' be a finite field of characteristic p. If f € F(z] has
degree n and is indecomposable over F' but decomposable over F, then one
of the following holds:

() n=21andp=T,

(1) n =55 and p=11;
(iii) n = p® witha > 2; or
(iv) n= 4p®® witha > 1.

As we have remarked above, there are such examples in (i) and (iii). We
do not know whether the corresponding polynomial in case (ii) exists. One
can produce examples in (iii) using affine groups. It may also be possible to
produce examples where the monodromy group is nonsolvable (eg., where the
geometric monodromy group is a direct product of alternating or symmetric
groups of prime power degree). The possible examples in (iv) arise from the
groups in Theorem 4.2.

Note that if p = 2, then any indecomposable polynomial which decom-
poses over the algebraic closure must have degree a power of 2. Similarly, if p
does not divide 77, then any such polynomial has degree p*,a > 2 or degree
4p2°.

While there is some overlap with the group theoretic methods used in
[FGS], we should point out the differences. In [FGS], we used whichever
property (factorization or exceptionality) was more convenient to eliminate
the possible groups. Here we focus on the factorization property. Secondly,
in [FGS], we appealed to the factorization results in [LPS] to eliminate many
of the almost simple groups. Since we are interested in very special factoriza-
tions (but which are not in general maximal), in many cases we give direct
arguments to eliminate the groups.

The article is organized as follows. Section 2 contains some preliminary
results — in particular, a version of the Aschbacher - O’Nan - Scott Theorem
on the structure of primitive groups. Sections 3-6 consider the various cases
described in the AOS theorem (almost simple groups, affine groups, product
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structure preserving groups and diagonal groups). The final section shows
how the main theorems follow.
We thank Mike Fried for many very helpful discussions.

2. Preliminary Results

We shall use the Aschbacher-O’Nan-Scott Theorem on the structure of
primitive permutation groups in the form below (see [AS] or [LPS2]). If
G acts on a set Q and w € Q, let G, denote the stabilizer of w. Recall
that a component of a finite group is a quasisimple subnormal subgroup.
The Fitting subgroup of G is the maximal normal nilpotent subgroup of
G. We set E(() to be the normal subgroup generated by the components
of G (this is a central product). Then, F*(G) := E(G)F(G) is called the
generalized Fitting subgroup of G. It has the property that it contains its
own centralizer. In particular, F*(G) = L nonabelian simple is equivalent to
saying that L1 G < Aut(L) (G is said to be almost simple).

Proposition 2.1. Let G be a primitive group of permutations on a set 2

of order n. Let E = F*(G). Then one of the following holds:

(a) G preserves an affine structure on , n = p®, E = 0p(G) is elementary
abelian, G = EGy with Ey, = 1;

(b) E is simple and nonabelian;

(¢) G preserves a product structure on €. In particular, G < Sg1S:, with
n=~0,t>1,6>4. Also, E=L x ... x L with L nonabelian simple.
Either n = |L|™,m > 1 or (i has exactly t components. In the latter
case we may assume that E,, = U x ... x U, the product of t copies of
a sugroup U of index £ in L;

(d) G is of diagonal type — i.e. G hast > 2 components each isomorphic

to the simple nonabelian group L, E,, = L is a full diagonal subgroup of

E and n = |L|'"!. Moreover, either t = 2 or G acts primitively on the t

components.

We will need some results about exponents of Sylow subgroups of Aut(L)
for L a nonabelian simple group.

If G is a finite group, let e¢(G) denote its exponent and e,(G) = e(P) for
some Sylow p-subgroup P of (G. If m is a positive integer, let m, denote the
largest power of p dividing m.

Lemma 2.2. Let L be a finite nonabelian simple group which is alternating
or sporadic. Then the set of primes r such that e.(Aut(L)) < |L|, and
2e,(Out(L)) < |L|, has cardinality at least two unless L = As, Ag or J;.

Proof. First consider the case that L = A, with n > 7. Then e.(S,) <
(n!/2), for r = 2,3 (this is just the simple observation that the Sylow 3-
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subgroup of A, is not cyclic and a Sylow 2-subgroup has exponent at most
ny < (n!/2)2).

If L is sporadic, it follows (cf [AT]) that except in the case Jj, a Sylow
3-subgroup of L is not cyclic and so (since | Aut(L) : L] < 2), r = 3 satisfies
the condition. If L = Aut(L), then 2 also satisifies the condition since a
Sylow 2-subgroup cannot be cyclic. In the remaining cases, one verifies (cf
[AT)) that 2 also satisfies the condition.

Lemma 2.3. Assume that F*((G) = L, a simple Chevalley group in charac-
teristic r.

(a) er(G) < |L|, unless L = Ly(4), L = La(r), L = 2G2(3)’ or L3(2).

(b) e2(Out(L)) < |L|2.

(¢) 2|Out(L)|, < |L|, unless L = Ly(4).

Proof. If L = Ly(r®), |L|, = * and e,(Aut(L)) < ra, and |Out(L)| = a,.
Thus the results hold in this case.

In general, if L is defined over Fy., | Out(L)|, < a6, where § is the order
of the r-subgroup of the group of graph automorphisms of L. It is straightfor-
ward to verify that (a)-(c) hold (compare this with the more difficult [FGS,
12.8)).

Lemma 2.4. Assume that F*(G) = L a simple Chevalley group in charac-

teristic r. One of the following holds:

(a) There exists a prime s dividing |L| such that s does not divide the order
of the normalizer of any parabolic subgroup of G;

(b) L = Lg(2) or L = Ly(r) with r a Mersenne prime.

Proof. This follows easily from the existence of primitive divisors.

3. Almost Simple Groups

We consider almost simple groups in this section. If L is a simple Cheval-
ley group, we let P; denote a maximal parabolic subgroup of L corresponding
to the ith node of the Dynkin diagram (in particular, if L = L, then P;
is the stabilizer of a point in projective space and P,,_; is the stabilizer of
a hyperplane). If L is a classical group preserving a form (i.e. L is an or-
thogonal, sympletic or unitary group), then N; denotes the stabilizer of a
nonsingular 1-space (or hyperplane). This is unambiguous except in the case
L = Q4pn41, where there are two orbits of nonsingular 1-spaces. We denote
the two types of subgroups by N{ where ¢ = + depending upon the type of
the orthogonal complement to the 1-space.

Theorem 3.1. Let L 4G < Aut(L) with L a non-abelian simple group.
Suppose that G factorizes as G = XY, where X is a maximal subgroup of
GG of index n, L £ X, and for some prime p, the factor group Y/0,(Y) is a
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cyclic group of order prime to p. Then (up to an isomorphism), one of the
following:
(A) L= A, and one of:
i) n=¢, Y is a transitive subgroup of S.;
ii) n = (§), ¢ =p°®, Y is a 2-homogeneous subgroup of S, contained in
AGLa(p);
(B) L is classical, and one of:
i) X = Ny in G with L one of Uy, PQ,, or Qamyr (with X = NJ
in the last case);
11) X = P1 (OI‘ Pm—l), L= Lm,'
iii} one of the exceptions in Table B;
(C) L is sporadic, in actions given in Table C.

Table B: Exceptional factorizations of groups of Lie type.

G X Y n
L3(2).2 P52 7.6 21
Ly(2) GL,(4).2 23.7 56
Ls(2) P, 315 155
Us(3) L3(2) 3i+28 36
Us(5) A7 51+2.8 50
Us(2) P, (3% 27
Us(3).2 La(4).2 342 162
Spe(2) Ss 3i+2.8 36
2+(3) Spe(2) 334313 3,159
QF(2) Ag 26.15 960
PQF(3) 03 (2) 364313 28,431
L2(23) S4 23.11 253
L,y(11) As 11 11
L,y(19) As 19.3 57
L,(29) As 29.7 203
L,(59) As 59.29 1,711
Ly(11).2 Sy 11.5 55

L2(16).4 (As x 2).2 17.8 68
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Table C: Factorizations of sporadic groups.

G X Y n
My Mo 11 11
M, La(11) 32.8 12
My, Moy .2 115 55
My, My, 32.8 12
M My 22x3 12
My .2 M .2 11.2 22
Mas My, 23 23
Mo My, .2 23.11 253
Mg 24 Ay 23.11 253
Moy Masa 283 24
J2.2 Us(3).2 524 100
HS2 Mys.2 5x 5.4 100
He2 Spa(4).4 71426 2,058
Suz.2 Ga(4).2 35.22 1,782
Remarks.

1. There are further examples, which are obtained from the factorizations
given in the Theorem by applying an exceptional automorphism between
simple groups, or by applying an outer automorphism. These include:

a) the important family L,(g) acting on the set of cosets of the dihedral
subgroups of order (2,¢)(¢+ 1) in [FGS] is listed here as Q3(g) on
Ny

b) the family Span(g) on the cosets of O, (q) (g even) is given as
Q2m41(g) on N[5

c) the various examples in L = PQ3 (q) of X = Oz(q) are all given as
Ny;

d) the ”sporadic” examples of A, with ¢ = 6 and ¢ = 8 are given in
(B)-

2. All the cases listed in the Theorem lead to relevant factorizations, but
in some cases an outer automorphisms needs to be present in G, either
to facilitate the factorizations, or to make X maximal. These instances
are not always indicated in the statement of the Theorem but are visible
in the proof. In Tables B and C, the group G is taken to be minimal
so that the claim holds; it may be possible to replace G by one of its
overgroups in Aut(L). The subgroups Y are not in general unique.

3. In most cases described, the prime p is uniquely determined. However,
in cases A(i), B(ii) and the cases Ls(11), M;;, and M3, the prime is
arbitrary (since Y can be taken cyclic - this may force G to contain
outer automorphisms). In B(i), p is the characteristic of the group.
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Proof.

A) The case where L is the alternating group A..

Let X be the set of ¢ points on which L acts naturally.

Consider first the case where n is ({), X is the stabilizer of some k-
subset of ¥ and Y is k-homogeneous on X, with k < ¢/2. If k > 1 then Y is
primitive on X, so ¢ = p? for some a and Y < AGL,(p). Also, if ¢ # 8, we
have k < 2, since AGL,(p) contains no cycle of order (p® — 1)(p? — 2)/6 (or
(»® - 1)(p® — 2)/2 if p=3). And if c = 8 and k = 3, then n = 56, leading to
an example in the Theorem (given there as L4(2) in (B)).

Assume then that n is not ({). By [LPS, Theorem D), either A._ is
normal in Y for some k < ¢/2, or ¢ one of 6, 8 and 10. Since Y/O0,(Y) is
cyclic, it remains to consider ¢ < 10, ¢ # 9. If ¢ = 5, since X is maximal,
n = 6 (which leads to the example L,(5) on the cosets of P;). If e =7, X
would be a 3-transitive subgroup of A, which is impossible. Remark 2 of
[LPS, p.9] deals with the cases ¢ = 8 (note that the example with n = 15 is
L4(2) on the set of cosets of P;) and ¢ = 10. Finally, let ¢ = 6. From [At], n
is one of 6,10,15,36 and 45. The third and fifth possibilities are out - there
are no suitable subgroups Y in G. The other three appear as examples in
the Theorem, the second as Ly(9) on P; and the fourth as Q3(9) on Ny in

(B).

B) Here L is a Chevalley group of characteristic r. All factorizations
of exceptional groups are known [HLS]. None satisfy the conclusion of the
theorem. Thus we may assume that L is a classical simple group of dimension
d, of characteristic r, with ¢ = r®. In view of A) we may assume that L is not
alternating. Much of the analysis here is similar to that in [LPS, Chapters 3
- 6] but is easier. We shall make use of primitive prime divisors. As in [LPS)
(see in particular 2.4 and 2.5 there), we shall write g; for any prime divisor of
7% — 1 not dividing any r/ —1 with j < ai. We also write ¢} for the product of
all such primitive prime divisors of #** — 1 (counting multiplicities). Further,
we write ¢}* for the product of all prime divisors of ¢! — 1 not dividing any
¢’ — 1 for j < i. Finally, we shall reserve the symbol ¢ for the largest ¢ for
which ¢; divides |L|.

We proceed in a series of steps. For various arithmetic reasons it will be
convenient to put

L = {L2(q9), L3(4), Us(2), Sps(2), L6(2), 23 (2)}
and consider those L in £ separately for much of the proof.
Step 1. If d > 12 then |G : Y| > ¢24*%; if moreover G is unitary then
|G Y| > ¢4+,
This is immediate from the structure of Y. (In fact, the smallest such
index is at least as large in magnitude as the index of the Borel subgroup.)
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Step 2. If d > 12 then X is a geometric subgroup of G (that is, X is in
one of the Aschbacher families C;, with 1 <1 < 8 - cf. [LPS, 2.2.5)).

Since G = XY, we have |X| > |G : Y|. We apply Liebeck’s bounds
(cf. [LPS, 2.2.9])). If X is not geometric, we deduce quickly that F*(X) is
the alternating group A, with ¢ either d + 1 or d + 2. Now r divides |X| to
power less than d + 2. Consideration of the r-exponent of G (and structure
of V) forces p = r. Hence Y lies in (the normalizer of) a parabolic subgroup.
It follows that ¢* must divide |X|. On the other hand, ¢ > d — 2 and |X]|
divides (d + 2)!. By a result Hering (cf. [LPS, 2.4D(i)]) we have ¢ = 2 and d
is 12 or 18. These are clearly impossible.

Step 3. Case where ¢} divides Y, with L ¢ L.

Since ¢, can never divide the order of a parabolic subgroups, we see that
p# r and Y is not in (the normalizer of) a parabolic subgroup of L.

We claim that Y < N(T), where T is a torus of order divisible by g¢., so
that |Y N L| divides |T'|.c, where ¢ is in fact in most cases d, except that it is
d—1for L either Uq(q) with d even or Q9m41(g) with ¢ odd, and it is d—2 for
L = PQ#.(q). Assume first that Y NL is irreducible. If p is a primitive prime
divisor of ¢¢ — 1, then the normalizer of any p-subgroup (and hence of Y) is
well known to be (contained in) the normalizer of a suitable cyclic torus as
claimed. Suppose then that p is not a g.. If O,(Y) is reducible, we see that
since ¢, divides |Y|, we have Y imprimitive with d components of dimension
1,and YNL < (¢ — 1)4d. Hence ¢ = d, an odd prime. Also, L = Q4(q)
(cf. [LPS, 2.5])) and e = d — 1. Hering’s result [LPS, 2.4D] now implies that
d =7 and ¢ is 3 or 5. These are clearly impossible (note that X must be
parabolic now). Now assume that Op(Y) is irreducible, so d is a power of
p. Using the fact that some g.-elements normalize Op(Y'), we get Y to be a
subgroup of a group in Aschbacher’s class Cg; moreover, p = 2, ¢t = e+ 1.
We see as before that either r = 3 andeis4or6,orr=5ande=6. It
follows (cf. [LPS, Table C¢)) that Y N L < 2845 with L = PQF (r) (note that
L # PSp4(3) here). Then Y NL = 28.7, which is impossible. Finally, if YNL
is reducible, the presence of g} forces L to be one of Uzm,Qam41 or PQ‘Z"m
and Y N L in the stabilizer of an orthogonal partition W; L Wy with W; of
codimension 1 (possibly 2 for L = P§2;m*). We apply the above analysis to
the intersection of Y with the classical group on Wi, and the claim follows
also in this case.

Thus Y < Ng(T), with T a torus of order divisible by ¢g.. We claim
that X is (the normalizer of) a parabolic subgroup as in the Theorem - in
fact L = L4(q), and X is P, (or Py_,), with one small exception. The strong
upper bound on the order of Y gives a strong lower bound on the order of
X, and this is used to determine X by applying the bounds of Cooperstein
and Liebeck (cf. [KL, 5.2.2] and [L, Section 5]). The only cases that remain
for further consideration have L equal to one of
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La(5), Ls(2),Ua(q), Us(83),Us(5), Us(8), Spa(4), Q3 (2), Sps(2).

The first of these is ruled out in [LPS, 5.1.2(a)]. The second leads
immediately to the well-known exceptional example with X = P2 (or P3) in
Table B. The groups Us(q) are dealt with in [LPS, p.98] and there are no
examples (note that while Aut(U3(8)) has an exact factorization involving
the normalizer of our torus, we must have p = 19 and Y/0,(Y) elementary
abelian 32). Next, Uy(3) is impossible by [At, p.52]. If L is Us(5) or Uy(8)
then X = P of index 7.108 and 19.243, respectively; we see that Y equals
(respectively has index at most 2 in) the normalizer of the torus in Aut(L),
and we deduce that Y/O,(Y) cannot be cyclic. Finally, the last three cases
are eliminated in the following way: from [At], the only possibility in each
of these is the exact factorization G' = X.(17.8), where X has index 136 in
(; but in each of these cases, X contains representatives of all the involution
classes in G.

Step 4. Case X geometric, with L ¢ £ and ¢, dividing | X|.

Here X € C;, with i € {1,2,3,6, 8}, and further restrictions apply (cf.
[LPS, 2.5)).

If X € C; then one of

X = N, in G of type 0%, or Uz,

X = Ny in G of type Ozmy41, OF

X = Ny in G of type OF,,.

The possibilities in the first two lines give examples in the Theorem
(see Step 7 below). In the last case, the index of X in G is ¢*™~2(¢™ —
1)(g™=! — 1)/2(g + 1). Since G has no elements of order either ¢>™~2/(2, ¢)
or (¢™ ~ 1)(¢™ ' —1)/(g + 1)(2,q — 1), this is impossible.

If X € Cy, an imprimitive group, then L = Qgmn41(g) with ¢ odd, 2m +
1 > 7 an odd prime and X is of type O; ! Som4a1 (cf. [LPS, 2.5]). Since
Y| > |G : X|, we have 2m + 1 = 7 and ¢ is 5 or 3. These are impossible:
in the former case, there are no elements of order either 5% or 31.13 in G; in
the latter, the index is 37.13 - but 13 does not normalize any 3-subgroup of
order > 37 (cf [At, p.109)).

If X € Cs, an extension field subgroup, we use the argument of the last
case in C; to get d < 4. The case d = 3 is ruled out as in Step 3 by reference
to [LPS, 5.1.2 and 5.1.10] (the exact factorization of Aut(Us(8)) fails again
to be an example, since N(P)/O2(N(P)) is not cyclic). Solet d =4 and L
be linear or symplectic. In the former the index is ¢%(¢3 — 1)(g — 1)/2. Now
G has no element of order ¢*/(q,2) (since ¢ >2),s0 Y < P, and Y contains
an element of order (g3 —1)(¢—1)/(g —~ 1,2). It follows that ¢ = 3 - but even
here the 13 element normalizes no 3-subgroup of order > 3%. In the latter,
we get the examples given as N in Q5. The other related possibility, the C§
subgroups LN X = (¢? + 1).4in L = Sp4(q) with ¢ even, is easily ruled out
as ¢ > 2.
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If X € Cg, s0 X is of extraspecial type, then by [LPS, 2.5] d is a power of
2, q is odd and either ¢, = d+1 a prime, G linear or symplectic, or g, = d—1
a primme, G orthogonal of type +. In the foriner case we get G symplectic
with d = 4 and ¢ = 3, a case not considered here. In the latter case d = 8
and ¢ = 3 ~ however OF (3) has no elements of order 3'° or 65.

If finally X € Cg, a classical subgroup, the above argument concerning
orders of elements in G forces either L N X = PSpa(q) with L = Ly(g), or
LN X of type Os,, with L = Spa,(q), ¢ even. These are examples in the
Theorem, given there as N; in PQ¢(q) and Ny in Q2m41(g), respectively.

Step 5. Case L ¢ £, X € S, ¢, divides [X]|.

Here d < 11 by Step 2. Much is known about the modular representa-
tions of almost simple groups of such small dimensions. Indeed, Kleidman’s
unpublished manuscript [K1] contains a list of maximal subgroups of classi-
cal groups with d < 11. This is what we used in [LPS]; since [K1] has not
been published, we shall not use it here explicitly. Much of what we need
is in fact well known — cf. [KL, 5.3 and 5.4], the modular atlas [MAt] of
Parker et al, [Kol], [Ko2]. We remark that a forthcoming manuscript [PPS]
will contain much more information concerning subgroups X in this Step (cf.
also [MSW]).

We consider separately the cases where F*(X) is of Lie type in charac-
teristic r, alternating, sporadic and of Lie type in different characteristic.

i) F*(X) of Lie type in characteristic r. Using [KL, 5.4] it is quite easy
to list all examples with ¢, dividing | X| here:

type of X typeof L restrictions m;
2Bs(q) Ba(q) g = 2% ¢ (¢* - (g +1)
G5(q) O7(g) €=+ unless ¢ =3+ ¢3 (¢* - 1)/(¢ - 1,2)
Us(q) 01(q) characteristic 3 %, qa-q3
Us(g) 03 (9) ¢=2(3) ¢°,qa-3

O1(g) 0% (9)

(We remark that the irreducible representation of L(¢®) in dimension 8
gives SLa(¢%) as a subgroup of Sps(q) but not of OF (¢).) The last line yields
examples: a triality automorphism moves these X to Ny in O3 (g) given in
the list. The other possibilities are easily ruled out: the last column of the
table gives two coprime divisors m; of |G : X| such that G has elements
neither of order m; nor ms.

ii) F*(X) is alternating, say A.. Since d < 11, we have ¢ < 13; moreover,
¢ < 10 unless the module is the nontrivial irreducible constituent of the
natural permutation module. If g, = 13 then d > 12 - not so. If ¢, = 11
then ¢ > 11, so d > 9, whence e = 10, so d is 10 or 11; however there is no
element in (G of order divisible by ¢*° or by ¢z.¢s.
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If g = 7 then ¢ > 7; hence e = 6. If L = Us(q), we get the only
possibility A7 < Us(5); this gives an example ([At, p.34]). If L = Uy(q) then
¢ < 7; in all the other cases d > 6. It follows that Y is in (the normalizer of)
a parabolic subgroup. Hence ¢ = 7, and ¢q is 3 or 5. The case L = U,(q) is
now ruled out in [LPS, p.112]. In the other cases there is no element of order
ga.gs in G.

If g =5,as d > 2, we have e = 4,50 d = 4 and L is L4(g) or PSpa(g)-
Since ¢ > 2 and g4 = 5, we have g odd. Also, ¢ > 3 if L = PSps(g). The
above argument now forces ¢ = 5, ¢ = 3, so L = L4(3). From [At, p.69],
¢ = 6 and the index of X in G is 3*.104. However, G has no elements of
order 104.

iii) F*(X) is a sporadic simple group. Since d < 11, F*(X) is a Mathieu
group or one of the first three Janko groups. The only possibility for J3 is
Ja < Ug(2); however, G lias no elements of order 228 or 2,4.2;¢. Also, J; can
only arise in O7(11) - but 11§ = 37. Next, J» < PSpg(q) for suitable g (eg.
g # 3, and lere ¢ > 2). As before, ¢z = 7, so ¢ = 5; but G has no elements
of order 31.13.

If F*(X)is Mag or Ms4 then L = Ly;(2); but here 2}, =23.89,s0 Y is
not in a parabolic, which is impossible. Now M2, < Us(2) has index 23.3%
and G has no elements of order 22 or 3%; the only other possibility for My
has d = 10 and is easily ruled out. If F*(X) = M, then either M;; < Ls(3)
or d > 10. In the former, G has no elements of orders either 3% or 11.13;
the latter is clearly impossible. Finally, if F*(X) = M2 then ¢, = 11; since
d > 6, have e = 10 and d > 10; this again is clearly impossible.

iv) F*(X) of Lie type in characteristic different from r (but not an
alternating group). From the Landazuri - Seitz bounds, the relevant F*(X)
are (cf. [Ko2)):

La(q) with ¢ € {7,8,11,13,17,19,23},

L3(3), L3(4),Us(3),Us(2), Us(3), Sz(8), Spe(2) and QF (2).

Assume first that ¢, = 5; then ¢ = 4, so d = 4, and the only candidates
for F*(X) are L3(4) in characteristic 3 and U4(2) in odd characteristic. The
former leads to the embedding L3(4) < U4(3) and the factorization U4(3).2 =
(L3(4).2)(3*.2) in Table B: for, by [LPS, p. 113], Ls(4) N 3%*.4¢ = As, so the
normal 3-subgroup of 3%. 45 has 2 orbits of size 81 on L : X, and these are
interchanged by an outer involution in the normalizer. In the latter, we may
take the characteristic to be > 5; as usual, g = 5, so Hering’s result gives a
contradiction.

If g. = 11, we have F*(X) = L,(s) with s = 11 or s = 23. The usual
argument reduces to La2(l1) < Us(2) — but there is no factorization here
[LPS, p.99]. If g = 13 then F*(X) is L2(13) or Sz(8), and e = 6. In the
former, [LPS, 2.4D(ii)] gives ¢ = 4 — however, L3(13) < Ug(2) here. In the
latter, get Sz(8) < OF (5) - but 13 = 55. If ¢, > 13 then F*(X) = La(q.) of
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dimension > (g. — 1)/2, which is easily ruled out.

Finally suppose that g. = 7. If e = 3 then d = 3, so we have the
possibility L3(7) < Ls(g), where ¢ is not a power of 2 or 7. However, [LPS,
2.4D(ii)] leads to ¢ € {2,4}, a contradiction. So e = 6. If L = Uq4(q) with
d either 3 or 4 then either F*(X) = L3(4) < Uy(3) or F*(X) = L2(7) in
odd characteristic. We discussed the former case already. In the latter case,
[LPS, 2.4D(i)] forces ¢ to be 3 or 5. The embedding L2(7) < Us(3) yields an
example. Consider L = Us(5) next: the maximality of X forces G = Us(5).2
([At, p.34]), with n = 750; however, the parabolic subgroup order is not
divisible by 3 unless 3 divides |G/L|. Next, X is not maximal if L = Uy(3)
[At, p.52); and if L = U4(5), there is no element in G of order 117. Thus
6 < d < 8. Again, Y is contained in a parabolic, so ¢ is 3 or 5. The latter is
easily ruled out: since G has no elements of order 31.13, we have 13 dividing
|X]| - so F*(X) is L3(13) or Sz(8); however, (G also has no elements of order
31.33.

Thus L is one of Lg(3), PSps(3), Q7(3) and PQF(3). It is now easy
(using the above arguments) to dispose of the remaining possibilities X =
Ly(s) (with s one of 7, 8 and 13) — so F*(X) is one of L3(4), Spes(2) and
Q3 (2), leading to the possibilities

Ls(4) < Le(3),

Spe(2) < Q7(3) of index 3°.13, and

QF(2) < PQF(3) of index 37.13.

The first of these is not maximal - we have F*(X) < Us(3) = PQ;(3) <
Lg(3). The other two yield examples in Table B: If L = PQF(3) then L =
X.Py. Write U = O3(P;) and let K be a Levi complement. We have P,NX =
(3 x PSp4(3)).2, and U NX = 3; it follows that U has 117 orbits (of size 3°),
and these are permuted transitively by K and hence by a subgroup 33.13
therein (cf. (c) in Step 7). Similarly, if L = Q(3) then L = X.Ps with
Py = 33+3L3(3). Writing U = O3(P3) = 33+3 and U; = U’, we have U,
consisting of elements 3A, so that Uy N X = 1. Now X NP3 = 3_1'_"'2.25'4.
Writing @ = O3(X N P3), have Q N U equal either Z(Q) or Q. The latter
is impossible, as here @ < U and U, N Q = 1 would force U = QU, and
hence U/U; ~ @, which is not so. In the former case, U has 13 orbits on
G : X, and these are permuted transitively by L3(3) and hence by a 13-cycle
therein.

Step 6. The remaining cases.

a) First assume that L = PQ¥(¢) with ¢ > 2, G involves a triality, X ¢ S
and g¢ divides | X|. By [K1], X N L is either 23+6L3(2) or (;GUa(q) x (¢ +
1))2¢. Neither is possible: G contains no elements of order ¢° or divisible by
the odd part of (¢2 +1)(¢® - 1).

b) Next we remark that the assertions concerning the linear groups of
dimension 2 follow immediately from [LPS, 5.1.1].
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¢) If L = L3(4), we use the information in [At, p.23]. If 7 divides |Y]| then
|Y'| divides 42; it follows that X is P, (or P2), an example in the Theorem.
So assume that 7 divides |X|. If X N L = Ly(7) then the maximality of
X implies that there are no outer automorphisms in G of order 3. But
|G : X| = 120, whereas there are no elements in G of order 15, 24 or 40.
Hence [XNL| =21, |G : X| = 25.15. It follows that Y is in the normalizer of
a parabolic. However, an element of order 15 cannot normalize a subgroup
of order > 26.

d) If L = U(2), there are maximal subgroups in (& of index 27, 36, 40,
40 and 45 (see [At, p.26]). The first three are examples in the Theorem (the
first in Table B, the second is Ny in Q5(3), the third is Ny in Us(2)). In
the fourth case, the permutation character is 1 + 155 + 24,. Now Y = 2.5,
where the normal subgroup U = O2(Y) contains 5 elements of type 2A and
10 of type 2b. A simple character calculation shows that U has 10 orbits on
G : X, so 2.5 is intransitive. The last possibility is also out: no 5-subgroup
normalizes a 3-subgroup in G and vice versa.

e) If L = Spe(2), all possibilities for X in [At, p.46] other than X =
0§(2) yield to the usual considerations concerning Y. The remaining two
possibilities give examples in the Theorem: for ¢ = — this is the usual ex-
ample (cf. Step 7), whereas for X = OF(2) the factorization Spg(2) =
S5(3'1+2.8) is inherited from the factorizations Sps(2) = S3(Ua(3).2) and
Us(3) = L3(2)(3'*2.8).

f) If L = Lg(2), it is quite easy to show that there are no maximal
subgroups in . Hence X € C, and we see as usual that either X is parabolic,
or Y is in the normalizer of a parabolic in . The former leads to the usual
example P;. The latter is ruled out as usual, using the fact that G has no
elements of order 105 and 217.

g) Finally let L = QF(2). If 7 divides |Y|, we see from [At, p.85] that |V
divides 42 or 2°.7; there is no suitable X. So 7 divides | X|. If X is N; (or one
of its triality images), we get examples as usual. If X normalizes a parabolic,
we see that 135 divides |G : X|. However, there is no element in G of order
27, and no 5-element normalizes a 3-subgroup of order at least 27. Finally,
let X = Ag in L, of index 960. We claim that there is a subgroup Y = 26.15
which gives an example. We consider P; = 2%.43 and write U = O3(P).
Then U consists of involutions in classes 2A and 2B. We choose X so that
the permutation character of G is 1 + 843 + 175, + 700, so that L = X P;.
Now U is semiregular on L : X, so has 15 orbits of size 64. It follows that a
Levi complement in Pj, and hence also a 15-cycle therein, acts transitively
on the set of these orbits of U, and the assertion follows.

Step 7. General examples.
a) Case L = Spam(g), X = SO3,,(q), of index 1¢™(¢™ — 1), with ¢ even.
It is quite easy to see that L = X Z, with Z = Sp2(¢™) and XNZ = SO; (¢™)
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(cf. [LPS, p.48]). Hence the Borel subgroup Y = ¢™.(¢™ —1) of Z is transitive
onL:X.

b) Case L = Qam41(g), X = Ny, ¢ is odd and the index is $¢™(¢™ —1).
We have L = X Py, [LPS, p.57]. Also, P, = U.K, where U = O,(P,;) has
order ¢3™(™+1) and K, a Levi complement, is the subgroup of index 2 in
GLm(q) (denoted by 1GLn(q)).

Taking the usual basis {e1,...,em,d, f1,..., fm} and Py to be the sta-
bilizer of the subspace

I 0 O
< ey,---,em >, we see that U consists of matrices ( b 1 0) subject

A =b T
A0 O
to A+ A* +b'.b = 0, and K consists of the matrices | 0 1 0 with
0 0 At

det(A) a square. Taking v = e; + Afy (for a suitable A) so that X = L¢ys,
we see that Uc,s consists of those matrices in U with b; = 0 and a;; = 0 for
all i. It follows that |Ucys | = ¢3™(™=1) and the orbits of U on L : X have
size ¢, and there are (¢”™ — 1)/2 of them. Any vector of minus type projects
nontrivially either on < ey,...,e;m >oron < fi,..., fn >. f mis even then
K contains an element z of order ¢™ — 1. No power of z other than +I can
fix a 1-space of minus type. It follows that U. < z > is transitive. If m is
odd and g is 3 mod 4, taking z € K of order 3(¢™ — 1) works, since —I is
not in K. More care is needed though for m odd when ¢ is 1 mod 4: we need
to replace L by SO2pm4.1(g); then Py = U.GLy(g), and taking 2 € GL,(q)
of order ¢™ — 1 works.

¢) Case L = PQ} (g), X = Ny, of index ¢™~1(¢™ — 1)/(2,¢ — 1). The
argument here is similar to (but easier than) that above.

d) Case L = Uam(g), X = Ny of index ¢*™~1(¢*™ —1)/(¢+1). We have
L = X P, [LPS, p.53]. Also, taking the usual unitary basis and P, we have

P,, = U.K, with U of order qmj, consisting of the matrices ( 1{1 (I)) with

A + A* = 0 and K consisting of matrices (g AO_,) with A € GLn(¢?)

having det(A)?~! = 1. Taking X = L¢y> with v = ¢; + Af, for a suitable
A € Fys we see that Uc,s consists of those matrices (i ?) in U with
ai; = 0 = aj, for all i. Hence all the orbits of U on L : X have size ¢*™!,
and there are (¢>™ — 1)/(¢ + 1) of them. The argument proceeds as before,
though we have to enlarge X in some cases — certainly ¢ = PGUan(gq) always
works, taking = a Singer cycle in K as before.

C) The case where L is a sporadic simple group.
By [LPS, Chapter 6], we only need to consider 12 of the sporadic groups.
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Let L = My,. If 11 divides |Y| then |Y| is 11 or 55, giving two of the
examples in the Theorem. So assume that 11 divides | X|; as X is maximal,
we get n = 12. We claim that M, = L3(11)(32.8): the 3% normalizer in My,
contains the Sylow 2-subgroup, and L2(11) contains no elements of order
4. On the other hand, Y cannot be a 2-local, since the 3-elements are not
semiregular.

Let L = M;5. Then 11 does not divide |Y|, since otherwise n divides
110. By [At], since its order is divisible by 11, LN X must be My, or La(11),
and n is 12 or 144, respectively. The latter is impossible, since Aut(Mj2)
contains no elements of order 9 or 16. In the former, the factorization M, =
M)1(32.8) is inherited from the corresponding factorization of M, mentioned
above (since My, = M3 M) and the two Mj; intersect in a L2(11)). And,
Mj2 = M)1(22 x 3): The centralizer of a 3B-element is A4 x 3 (the normalizer
is a 4 x 3 array group). The four-subgroup is 2A-pure, so we have a 22 x 3
acting regularly on either class of subgroups My;.

Let L = Ma;. From [At] we get 11 to divide |Y|, so n divides 110, and in
fact n divides 55 unless G contains outer automorphisms. Thus G = M5,.2
and n = 22. In fact, M22.2 = (M2,.2) D> is an exact factorization.

If L = Mj3, we see that 23 must divide |Y|, so n is 23 or 253, as claimed
in the Theorem. Let L = Ma4. If 23 divides |Y| then n divides 253, which
is not possible [At]. So 23 divides |X|, and in fact X = M3, n = 24. Now
the trio subgroup 26.(L3(2) x S3) is transitive in the natural action of My,
and the base group has 3 orbits of size 8, permuted transitively by the Ss.
It follows that M24 = M23(26 3)

Let L = J;. By [LPS, 6.6], n = 100; also, p = 5, so Y < N(5%). The
argument in [LPS, 6.6] shows that G = J,.2 and J2.2 = (U3(3).2)(52.4).

If L = HS, then again n = 100 and p = 5. It is not hard to see that
L has no relevant factorizations; however, we have HS.2 = (M22.2)(5 x 5.4):
For, S5 x 5.4 is transitive on G : X, so the 52 is semiregular there; and, by
[At], the 2-elements in the As are 2B, whence the elements of order 4 in the
S5 are 4F and hence semiregular.

Let L = He. Using 17, we get n = 2058, so p = Tand YNL <
7142(S;3 x 3). By [LPS, 6.8], we have G = He.2 = (Spy(4).4)(7'+2.6).

If L = Suz, then n = 1782, 50 p = 3 and Y NL < 3°M);,. Hence
G = Suz.2, and in fact Suz.2 = (G2(4).2)(3°.22): by [LPS, 6.10], 3°M,, is
transitive on (G : X, and the base group 3° has 22 orbits of size 81 there; and
the element of order 22 in 3%(M); x 2) is semiregular there by [At], so the
assertion follows.

Finally the possibilities where L is one of Ru, Fos and Co, are easily
ruled out.
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4. Product Actions

Let Q@ = A! be a set of order n = £ with |[A|=¢>1andt > 1. Let G
be a primitive group of permutations of €2 preserving the product structure
on €. So (7 is a subgroup of S¢1S¢. Let E = F*(G).

The following result is [FGS, Lemma 13.5)

Lemma 4.1. Let G be a primitive group acting on §2. Assume that H is a
transitive subgroup of G and H/O,(H) is cyclic. Then one of the following
holds:

(a) £=p° or

(b) £=2p*, poddandt=2.

Theorem 4.2. Let G be a primitive group acting on ). Assume that H is
a transitive subgroup of G and H/Op(H) is cyclic. Ift = 2 and £ = 2p® with
p odd, then E = L x L, where L is one of
(i) A and p is the odd prime dividing ¢;
(i1) Lo(g) with £=q+ 1 = 2p%;
(ii1) As with £ =10 and p = 5;
(iv) Us() with £ = 50 and p = 5;
(v) Magy with £ =22 and p=11; or
(vi) Us(3) with £=162 andp = 3.

Proof. The first statement follows from the Aschbacher-O’Nan-Scott The-
orem (see 2.1). Moreover, it also implies that if E,, is the stabilizer of some
w € Q, then we may assume that E,, = U x U with |L : U| = 2p®. Let A
be the subgroup of (& acting coordinatewise on A. So E < A < S, x S,.
Let m; be the projection of Sp x S onto the #th factor. Set X; = m;(A) and
},i = 7I'i(H n A)

We claim that Y; is transitive on A. Assume that Y; has v; orbits on A.
It follows that H has at least v;v3 /d orbits on 2, where d = |H : HNA]|. Since
H is transitive, this implies that vjvs < d < 2. Ifd=1,thenv; = v, = 1. If
d = 2, then Y; and Y, are conjugate in G, whence v; = vy < 2. This proves
the claim.

The primitivity of G implies the primitivity on A of N; = Nx,(U). Thus,
N; = UY; and Y;/0,(Y;) is a homomorphic image of H/O,(H), whence is
cyclic. Since F*(N;) = L, we can apply Theorem 3.1. Thus, L occurs in the
coiiclusion. It is straightforward to compute which groups in 3.1 satisfy the
additional restriction that A has cardinality 2p® for some odd prime p.

Remarks: (1) All groups in the conclusion of Theorem 4.2 yield examples.
Let M be a group with F*(M) = L and U a subgroup of index 2p® given in
3.1 so that M = UY with Y = (y,X), X = Op(Y) and y a 2-element. Set
G=M185;, Gy =U1S:. Let b € G be the involution interchanging the
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two components. Set g = (y,1)h and H = (X x X)(g9). Then G = G, H and
H/O,(H) is cyclic.

(2) In 4.2(ii), there are restrictions on ¢. For example, it is easy to see
that ¢ = #2° for r an odd prime.

We now turn to the case that £ = p*. The existence of H is guaranteed in
this case (eg., take H to be a Sylow p-subgroup). An immediate consequence

of [Gu] (see also [Kal) is:

Theorem 4.3. If{ = p®, then F*(G) = L x ... x L where L is one of the
following:

(a) Ag;

(b) La(a) with €= (g = 1)/(g - 1)

(¢) My, with £=11;

(d) Mas with £ = 23;

(e) Us(2) with £=27;

(f) Ly(11) with = 11.

We also take this opportunity to record the following result. This is an
immediate consequence of [AS] and the previous result (see also [Ka]). Let
AGLy(q) denote the group of affine transformations of a d dimensional vector
space over [F,.

Theorem 4.4. Let n = p* > 5. Let G = A, or S,,. Let M be a maximal

subgroup of G not containing A,,. Then one of the following holds:

(a) M is the stabilizer of a subset of size k < n/2;

(b) M is the stabilizer of a partition of {1,...,n} into subsets of size pb for
b=1,...,a—-1;

(¢) M= (Spb lSa/b) NG,

(d) F*(M) is simple and is one of the groups listed in 4.3(b)-(e);

() M =AGL,(p)NG.

We note that L,(11) < M), and so does not give rise to a class of maxi-
mal subgroups. The groups in 4.3(b)-(e) each give rise to a unique conjugacy
class of maximal subgroups in S, (even when two different representations
occur, the point stabilizers are conjugate in the automorphism group). These
classes may split into two different classes in A,, (e.g., this happen with M;;).

5. Diagonal Actions

In this section, we assuine that G acts primitively on 2 and is of diagonal
type. Thus, G has ¢t > 2 components isomorphic to L and if n = Q, n =
|L[*=!. Moreover, G embeds in Aut(L)? S;.
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Theorem 5.1. Assuming that G contains a transitive subgroup H, with
H/O,(H) cyclic. Then F*(G)= L2(p®) x L2(p®) with p* > 4. Moreover, H
normalizes each component of .

Proof. It follows from [FGS, 12.5] that t = 2.

By Proposition 2.1, we may assume that E = F*(G) = L x L, and
E, is the diagonal subgroup of E. Thus, G embeds in Aut(L)1S2. Let
z € Aut(L)1 S2 be the involution interchanging the copies of L and fixing
E,. Let D = Aut(L) the diagonal subgroup of Aut(L) x Aut(L). Note
that M = (E, D,z) contains G and acts on 2. Also, note that since H is
transitive, it has order divisible by |L|.

Observe that e.(G) < e.(Aut(L)) for r odd. Set f = e2(Out(L)). Let
y € M is a 2-element. If y € DE < Aut(L) x Aut(L), then y has order
dividing es(Aut(L)). If y ¢ DE, then y* = (a,b) € L x L with a and b
conjugate in L — thus, (a,b) is conjugate to an element of E,,. Hence y*/ has
a fixed point.

Let r be a prime dividing |[L| with r # p. Let R = (y) be a Sylow
r-subgroup of H. Note that the transitivity of H implies that H/O,(H) is a
cyclic group acting transitively on the orbits of O, (H). It follows that R/R,
must have order a multiple of |L|.. In particular, the previous paragraph
implies that e,(Aut(L)) > |L|, or r = 2 and 2e2(Out(L)) > |L|2.

It now follows from Lemma 2.2 that L is not alternating of degree at
least 7, and that L is not a sporadic simple group other than J,. Now
consider L = J;. Since L = Aut(L) and e2(L) < |L|2, r = 2. Moreover, H
must contain an element z of order |L|/|L|2. Thus z € E. Hence there exist
elements z; € L of order d; such that dyd; = |L|/|L|;. Since the subgroups
of L of order 11 and 19 are self centralizing, this cannot happen.

Since As = Lo(4) = L2(5) and Ag = Ly(9), we consider these groups
as Chevalley groups. We also consider the smallest Ree group as Ly(8) (and
so not as a characteristic three group) and L3(2) as Ly(7) (and so not as a
characteristic two group).

First consider L = Ly(4) = L2(5). This group is allowed in the conclu-
sion with p = 2 or 5. It is straightforward to check that there is no transitive
subgroup with H/O3(H) cyclic (there is no element of order 20 in a 3-local
subgroup).

So now assume that L is a simple Chevalley group in characteristic r
with L not one of Ly(4), Ly(5), or the smallest Ree group. We claim that
we may assume that p = r. It follows from Leinma 2.3 that p = r except
possibly in the cases L = Ly(r). We need only consider La(r) with » > 7.
Assume p # r. Let u be an element u of order r in H. Of course, u € E.
Since H = O,(H)Cy(u) and the Sylow r-subgroup of L is self centralizing,
it follows that u is contained in a component of G. Since, u normalizes no
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p-subgroup of Aut(L), H centralizes u Note that Cg(u) = (u) x K, where
K is a component of (G. The largest »'-subgroup of K has order r + 1. Thus
|[H| < r(r +1) < |L| and H can not be transitive. (note that we have
eliminated L3(2) with p # 7). So we may assume that p = r.

Let 7; denote the #th projection from E onto L. We claim that r||HNE].
If not, |L|, < |H|, < 2|Out(L)|.. It follows by Lemma 2.3 that L = L2(4).
In this case, it is easy to check that the claim is valid by considering the
centralizer of an involution. So assume that m (H) has order divisible by r.

If L = Ly(r?®), then r cannot divide mo(HNE) (or H < Ng(B), where B
is the product of Borel subgroups of each component of G; this subgroup is
however not transitive). This shows that H must normalize each component
of G (since otherwise, the two projections would be conjugate).

From now on, we assume that L is not Ly(r%) and aim for a contradiction
(this also eliminates L3(2) = L2(7) and the smallest Ree group). Note first
that L # Lg(2); here e3((G) = 9 < |L|s, contrary to p = r. In every other
case, it follows from Lemma 2.4 that there exists a prime s dividing |L| such
that s does not divide the order of the normalizer of any parabolic subgroup
of L. It follows that s divides |my( H N E)| but s does not divide |7, (H N E)|.
Thus, as above, H normalizes each component.

Since we may assume that G = HE, we may also assume that each
component of (7 is normal. Thus G < HE = AE, for some subgroup A
of D = Aut(L). We may assume that A contains the diagonal subgroup
J =DNE of E (this determines A uniquely - in fact, A = G,,). Since H is
transitive, it follows that G = H A.

We consider G < B x B with L < B < Aut(L). Then A is the diagonal
subgroup of €' x C for some C' < B. In particular, A & C'. Let H; be the
projection of H into the ith copy of C.

We claim that C = H;H,. First, note that if z € L, then (z,1) € AH
implies that (z,1) = (w,w)(hy,hs) where (w,w) € A and h; € H;. Thus
r = hl'lhz € HyH,. If u is an arbitrary element of C, then (u,v) € G for
some v € C. Since G = HE, (u,v) = (z,y)(h1, h2) with (z,y) € F and
h; € H;. Thus u = (uz~Y)z € H\L C H,H, as desired. This proves the
claim.

Since O.(H; NL) # 1, it follows that H; < Q, the normalizer of a
parabolic subgroup of L. By conjugating, we may assume that the Sylow
r-subgroup of Hs is contained in Q. Thus, C' = QHj3, where Hj is a Hall
r'-subgroup of Hs. In particular, Hj is cyclic. Thus, by a classical result of
Schur (see [Wi, §25]), € is 2-transitive on the cosets of a maximal subgroup
containing Q. Moreover, L must occur in Theorem 3.1. This forces L =
La(q).

Choose a prime s as follows. Let s = 3 if ¢ = 2. Otherwise, let s be
the largest prime dividing ¢ — 1. Since d > 2 and also (d,q) # (3,2), a
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straightforward computation shows that e,(G) < |L|,. This final contradic-
tion completes the proof.

Remarks: (1) Let J = PGLy(r®). Let B be the upper triangular matrices in
J (so B/O.(B) is cyclic of order ¢ — 1). Let T be a maximal nonsplit torus
of J (so T is cyclic of order ¢ + 1). Let H = (BxT)NDE < J x J and
(G = H(Lx L) < DE (in the notation of the proof). Then (& acts transitively
on the cosets of Gy, the normalizer of the diagonal subgroup of L x L, H is
transitive and H/O,(H) is cyclic.

(2) Note that Ls(g) x L2(g) = PQ(g). Thus, this family of examples is
actually in one of the families given in Theorem 3.1 (but the group happens
not to be simple).

6. Affine Groups

Let G be a primitive group of affine transformations in characteristic r
of degree r®. So E = O,(G) is elementary abelian and G = E(, where Gy is
the stabilizer of the origin and acts irreducibly on E. Let H be a transitive
subgroup with H/Op(H) cyclic. If p = r, then we can take H to be any
p-subgroup containing E (other choices may be possible). If p # », then
the Sylow p-subgroup of H has fixed points. Since the set of fixed points is
invariant under H, it follows that O,(H) = 1, i.e. H is cyclic. It follows
easily that a = 1,or r* = 4. If a = 1, then G” = 1; if r® = 4 then G = S4.

For the rest of this section, we assume that p = r. Set ¢ = p® = |E}.
Although the group theoretic conditions are satisfied, we do not, in general,
know when a group corresponds to a polynomial. However, there are two
cases where we can say more. Consider the case where Gy is cyclic of order
d. Then G embeds into the upper triangular matrices of P(GL(g) and so
acts as a group of automorhpisms of Fy[y]. Indeed, we see that the fixed ring
of G will be F,y[h(y)] where h(y) = (¥ — y)(y?! — ay) - - (y? — a?~ly), where
@ is a primitive dth root of 1 in F,. The fixed ring of Gy is F,[y?]. Thus
h(z) = f(z?) for some polynomial f. It follows that G is the (geometric)
monodromy group of the extension Fy(z)/Fq(f(z)).

Note that k(y) is invariant under any automorphism of F, and so has
coefficients in F,. Thus, the same is true for f(z). In this construction, we
did not need to assume that Gy acted irreducibly. Then the field extension
Fp(z)/ Fp(f(z)) has (arithimetic) monodromy group G.a. In particular, this
group does act primitively while G may not — this leads to examples of inde-
composable polynomials which become decomposable over a finite extension.

Now assume that G is the monodromy group of F(z)/F(f(z)), where F
is algebraically closed of characteristic p. We are still assuming that G is an
affine primitive group. We view f : X — Y where X = Y = P! as a branched
covering. Let B C Y be the set of branch points. So B = {yo,¥1,---,¥r}
with yo = co. We follow the treatment in [FGS].
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We recall the Riemann-Hurwitz formula in this context:

2(p* - 1) = Z ord(D;), (%)

zeX

where D, is the (local) different of the cover. It is convenient to break up
this sum. Let y € Y and set A(y) = 3 ¢s-1(y) 0rd(Dz). Then A(y) = 0 if
y ¢ B. If the cover is tamely ramified at y;, then the contribution to the
righthand side from the points over y; will be equal to p* — orb(g;), where
orb(g;) is the number of orbits of ¢; and ¢; is a generator of a decomposition
group for some point over y;. If the cover is wildly ramified, then it is more
complicated to compute the righthand side, but we shall use the following
straightforward result (this was pointed out to us by Fried).

Let y € B. Let D be a decomposition group at some point over y. Define
orb’(D) to be the number of orbits of D whose length is not divisible by p.
Then

A(y) > n — orb’(D). (%)

In particular, since the decomposition group at yo is transitive, it follows
that A(yo) > p®.

With these results in hand, it is a simple matter to show (using the fact
that this is a group of affine transformations — see [GT, §2] or [N]):

Lemma 6.1. Assume y € B is tamely ramified. Let g € (G be a generator
for the decomposition group. Assume g has order d.

() My) 2 (1/2)p*~*(p — 1) for p odd.

(b) Ifp =2, A(y) > 2.

(¢) Ifp is odd and d > 2, then A(y) > (3/5)p°.

Lemma 6.2. Assume y € B is wildly ramified with D a decomposition
group.

(a) If every orbit of D has cardinality divisible by p, then A(y) > p°.

(b) M) 2 p* —p*~! 2 (1/2)p°.

It now follows from (*) and Lemmas 6.1 and 6.2 that:

Theorem 6.3. Assume that G is the monodromy group of F(z)/F(f(z)),
where f(z) is an indecomposable polynomial in F[z] of degree p® with F
algebraically closed of characteristic p. Assume that G acts on the conjugates
of x as a group of characteristic p affine transformations. We consider f :
X — Y where X =Y = P! as a branched covering. Let B C Y be the set of
branch points. So B = {yo,¥1,...,Yr} Withyo =oco. Then |B| < 3. If |B| =
3, then p is odd, yg is the only wildly ramified point and the decomposition
groups at the tamely ramified points have order 2.

If we now consider the case where G/F is a p'-group, we can show:
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Theorem 6.4. Let G be the monodromy group of F(z)/F(f(x)) with F
algebraically closed of characteristic p and f of degree p®. Assume that the
permutation representation of G on the conjugates of z is an affine group
in characteristic p. If G/O,(G) is a p'-group, then G/0,(G) is cyclic or
dihedral. Moreover, if p = 2, then G/0,(G) is eyclic.

Proof. Note that any p-element in G is in Op(G) and so is fixed point free
in the permutation action. So if y; is wildly ramified, A(y;) > p®. Since yo
is wildly ramified, this implies it is the only wildly ramified branch point.
Let L be the Galois closure of F(z)}/F(f(z)). Let M be the fixed field of
0,(G). Then M is a Galois extension of F(f(z)) (since Op(G) is normal
in G) with Galois group G¢. The hypothesis implies that this extension is
tamely ramified.

First assume that there are three branch points. Then p is odd. Hence,
G/0,(G) = (g0, 91,92) where g; is the generator of the decomposition group.
Moreover, by choosing the g; appropriately, we may also assume that the
product is trivial. It follows by Theorem 6.3 that d, = d2 = 2. Thus,
G/0,(G) is dihedral.

If there are only two branch points, then the argument of the previous
paragraph shows that /O, () is cyclic. This completes the proof.

We now consider what one can say about exceptional indecomposable
polynomials over F, with affine (arithmetic) monodromy group G. Let G
denote the geometric monodromy group. Assume that f has degree p? with
p > 3. If p divides the order of |G : O,(G)|, then G contains SLa(p).
It follows that G does as well. Then G is 2-transitive and f cannot be
exceptional (see [FGS, §3]). Otherwise, we can apply 6.4 to conclude that
Gy 1s cyclic or dihedral.

Thus, any exceptional polynomial of degree p? with affine monodromy
group has a solvable monodromy group.

7. Proofs of the Theorems

Note that Theorem A follows from Propostion 2.1, Theorem 3.1, Theo-
rem 4.2 and Theorem 5.1. Theorem B is essentially a translation of Theorem
A to the geometric setting.

We now consider Theorem C. Let f € F,[z] be indecomposable. Assume
that f decomposes over . This is equivalent to saying that the arithmetic
monodromy group G is primitive but the geometric monodromy G is not.

We can apply our main result. Assuine that the degree of f is not a
power of p. Since G/G is cyclic, it follows that F*(G) = F*(G). In the
diagonal case, it follows that F*(G) already acts primitively, a contradiction.
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The case where f has degree 4p?? is allowed in the conclusion. So it suffices
to assume that F*((7) is simple. One checks that in all cases in Theorem 3.1,
except for those allowed in the theorem, F*(G) already is primitive. Thus,
G is primitive and so f is indecomposable over F.
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Subgroups of Exceptional Algebraic
Groups

Martin W. Liebeck and Gary M. Seitz
February 17, 1994

Throughout this paper, let G be a simple algebraic group of exceptional
type over an algebraically closed field K of characteristic p. The maximal
closed connected subgroups of these groups were determined in [Se], subject to
some mild restrictions on the characteristic p. In this article we describe some
results from [LS2] concerning arbitrary closed connected reductive subgroups
of G, again assuming mild characteristic restrictions (in particular, p = 0 or
p > 7 covers all the restrictions).

Before giving detailed statements, we give a general description of the
results. Theorems 5 and 6 below determine the embeddings of arbitrary
closed connected semisimple subgroups in G: if X is such a subgroup, then
X is embedded in an explicit way in a “subsystem subgroup” of G - that is, a
semisimple subgroup which is normalized by a maximal torus of G. Subsystem
subgroups are constructed naturally from subsystems of the root system of
G; this therefore determines the embedding of X in G. As a consequence,
when p = 0 there are only finitely many conjugacy classes of such subgroups
X, whereas there are infinitely many when p > 0.

The proofs are based on Theorem 1, which states that if the reductive
subgroup X lies in a parabolic subgroup P = QL of G, with unipotent radical
Q and Levi subgroup L, then some conjugate of X lies in L. This result can
also be used to prove that Cg(X) is always reductive (Theorem 2).

The other results concern the actions of simple closed connected subgroups
X of G on the Lie algebra L(G) of G. Following [Dy], a “labelled diagram” is
associated with each such subgroup; this is a labelling of the Dynkin diagram
of G with certain non-negative integers which are determined by the action
of a suitably chosen 1-dimensional torus of X on L(G). Theorems 7 and 8
reveal the extent to which X is determined up to conjugacy by its labelled
diagram. Finally, Theorems 3 and 4 give information about centralizers and
composition factors.
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We now state the results. In order to specify our assumptions on the
characteristic p, we define, for certain pairs (X, G), an integer N(X,G), as
given in the following table.

G = Es E7 Es F4 Gg
X =4 T 7T 5 3 3
As 5 5 3 3
B, 5 3 3 2
G, 7T 7 3 2
As 2 2 2
B; 2 2 2 2
Cs 3 2 2 2
B4,C4, Dy 2 2 2

For example, N(A,, E7) = 5, and so on. (This is the table of [Se, Theorem 1],
with a few additional entries.) If (X, G) is not in the table, set N(X,G) = 1.
And if X is a non-abelian closed connected reductive subgroup of G, and
X' = X;...X:, a commuting product of simple groups X;, then we define

N(X,G) =max(N(X;,G):1<iLt)
In particular, if p > 7 then p > N(X,G) for all X,G.

Theorem 1 Let X be a closed connected reductive subgroup of G, and assume
that either p =0 orp > N(X,G). Suppose that X lies in o parabolic subgroup
P = QL of G, with unipotent radical Q and Levi subgroup L. Then all
closed complements to Q) in the semidirect product QX are Q-conjugate. In
particular, X is Q-conjugate to a subgroup of L.

The proof of Theorem 1 is based on the fact that @ has a filtration by
particular high weight modules for L. Choosing P to be minimal (subject
to containing X), we find the embedding of X in L modulo @, so we can
restrict each of these modules to X. Then if V is a composition factor of such
a restriction, we show that with a few exceptions, all closed complements to
V in the semidirect product VX are V-conjugate, and the desired conclusion
follows from this. The proof is similar in spirit to those of [LS1, Theorems 2.1
and 6.1], but the representation theory involved is much more complicated,
and a great deal of calculation is required.

The following result is an immediate consequence of Theorem 1 (compare
[LS1, Theorem 8.1}).

Corollary Let X be a closed connected reductive subgroup of G, and assume
that p = 0 or p > N(X,G). Suppose that X normalizes o closed unipotent
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subgroup U of G. Then all closed complements to U in the semidirect product
UX are G-conjugate.

Taken together with [Se, Theorem 1], Theorem 1 leads to a description
of all closed semisimple subgroups of G (see Theorems 5 and 6 below). The
next result is also a consequence of Theorem 1.

Theorem 2 Let X be a closed connected reductive subgroup of G, and assume
that p=0 or p> N(X,G). Then

(i) Ca(X) is reductive;

(1) if p > 0 then Op(Ca(X)) = 1;

(#ii) if X is semisimple, then the rank of Ca(X) is equal to the maximal
co-rank among subsystem subgroups of G containing X.

The determination of all closed simple subgroups of G leads to the next
result.

Theorem 3 Let X be a simple closed connected subgroup of G with rank(X) >
2, and assume that either p = 0 or p is a good prime for G and p > N(X,G).
Then

Cre)(X) = L(Co(X)).

Remark The analogues of Theorems 2 and 3 for classical groups are not in
general true. For example, if G = SL(V) and X is a subgroup of G such that
V is indecomposable for X with composition series 0 < V; < V2 < V, where
W & V/V,, then Cg(X) is not reductive. And if G = SL,, with p=n, then
Cre)(G) # L(Ca(G)).

The next theorem and its corollary concern the connection between Aut
G-conjugacy and linear equivalence on L(G) for subgroups of G.

Theorem 4 Let X, and X, be closed connected simple subgroups of G of the
same type, and assume that p =0 or p > N(X,,G). Suppose that X, and X
have the same composition factors on L(G) (counting multiplicities). Then
either X, is conjugate to X3 in Aut G, or G = Eg and X, = X, = A,, with
both X, and X lying in subsystem groups DyDy4 and projecting irreducibly in
each factor.

Corollary Let X3, X, be closed connected simple subgroups of G, and assume
that p=0 or p> N(X;,G). If X, and X; are conjugate in GL(L(G)), then
either they are also conjugate in Aut G, or G = Eg and X; = X = A lying
in subsystem groups D,D;,.
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Remarks 1. The cases with G = Eg and X; & X, & A, lying in D,D, really
are exceptions to the conclusion of Theorem 4 and the corollary. Indeed,
Eg has two conjugacy classes of such subgroups A; which have the same
composition factors on all Eg-modules.

2. A result like Theorem 4 is not in general true for subgroups of classical
groups. For example, let p > 0,¢ = p® > 1 and let X; = X, = SL(W), where
W is a vector space of dimension m > 3 over the algebraically closed field
K of characteristic p. Embed X; and X; in D = SL,,:(K) via the modules
W @ W® and W* ® W@ respectively, (where W) is a Frobenius g-power
twist of W). Then X; and X, are not Aut D-conjugate, but have the same
composition factors on L(D).

We come now to the theorems which describe the embeddings of arbitrary
semisimple closed connected subgroups of G. In order to state the results, we
need to make one further definition.

Definition Let Y = Y;...Y, be a commuting product of simple algebraic
groups Y;, and let X be a closed semisimple subgroup of Y. For each i, let ¥;
be the simply connected cover of Y;. If A is a subgroup of Y, write A for the
group AZ(Y)/Z(Y),and fori =1,...,klet 7; : X — Y; be the ith projection
map. We call the connected preimage of Xx; in Y; the projection of X in Y;.
We say that X is essentially embedded in Y if the following hold for all ¢:

(1) if Y; is of classical type, with natural module V; (taken to be the
natural 2n-dimensional symplectic module if (Y;,p) = (B,,2)), then either
the projection of X in ¥; lifts to a subgroup of ¥; which is irreducible on V;,
or Y; = D, and the projection of X in Y; lies in a natural subgroup B, B,_,_;
for some r > 0, irreducible in each factor with inequivalent representations;

(i1) if Y; is of exceptional type, then the projection of X in Y; is either ¥;
or a maximal connected subgroup of ¥; not containing a maximal torus (and
hence is given by [Se, Theorem 1]).

Theorem 5 Let X be a closed connected semisimple subgroup of G, such
that every simple factor of X has rank at least 2, and assume that p = 0
or p > N(X,G). Choose a subsystem subgroup Y of G, minimal subject to
containing X (possiblyY = G of course). Then either

(i) X is essentially embedded in Y, or

(1)) Y =G =Es,p=17, X = G, and X < Fy < G with X mazimal in
F4.

The conjugacy classes and centralizers in G of the simple subgroups X of
rank at least 2 are explicitly listed in [LS2, Section 8]; also given there are the
minimal subsystem subgroups containing X and the restrictions L(G) | X.
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The next result is the analogue of Theorem 5 for subgroups with a factor
Ay

Theorem 6 Let X be a closed connected semisimple subgroup of G with a
factor A, and assume that p =0 orp > N(A;,G). Then one of the following
holds:
(i) there is a subsystem subgroup Y of G containing X, such thatY is a
product of classical groups and X is essentially embedded in Y, or
(it) there is o subgroup Yo = Fy, Eg¢, E7 or E3 of G, and a semisimple
subgroup Yy of Cg(Yo), such that either
(¢) X =Yoh, or
(b) X is essentially embedded in ZY:, where Z is a mazimal con-
nected subgroup of Yo not containing ¢ maximal torus;

(iti) G = G2, X = A, end X is mazimal in G.

Remark In (ii) of the theorem, the possibilities for ¥,Cg(Yo) are given by
Theorem 5, and those for Z by [Se, Theorem 1]. They are:

Yo possibilities for Z Cae(Yo) (G = Es, Ey, Eg, Fy)
F4 Al, A1G2, G2 Gg, Al, ]., l(resp.)

Es Az, G2, AyG,, Cy, Fy A, Ty, 1, -

E7 Al, A2, AIAI, A1G2’ A1F4, G2CS Al, 1, —,_

ES Al, BZ, AIAZ, G2F4 1’ Ty Ty T

The final two results concern labelled diagrams for simple closed connected
subgroups X of G. These are defined as follows. Let To be a maximal
torus of X, and let £(X) be the corresponding root system of X. Choose a
fundamental system II(X) in (X)), and denote by £(X)* the set of positive
roots relative to II(X). If & € E(X)*, and U, is the corresponding root
subgroup of X, then (Ui,) is an image of SL,, and we write h,(c) for the
image of the matrix diag(c,c™!) (c € K*). For ¢ € K*, define T'(c) = [] ha(c),
where the product is taken over all o € £(X)*. Then

Tx =(T(c): c€ K*)

is a 1-dimensional torus of X.

Now let T be a maximal torus of G' containing To, and let ¥ = £(G) be
the root system of G relative to T. For § € X, let eg be a weight vector
for T corresponding to §. Then there exist integers Iz such that for all
B€EX,ce K,

T(c)eg = cPeg.
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We can choose a fundamental system II = II(G) such that {, > 0 for all
o € II, and define the labelled diagram of X to be the Dynkin diagram of
G, with each node a € II labelled by the non-negative integer l,. It can be
shown that the labelled diagram of X is uniquely determined up to graph
automorphisms of G.

Theorem 7 Assume that p=0 or p > N(A;,G). Then any subgroup A; of
G is determined up to conjugacy in Aut G by its labelled diagram.

It is a fact that subgroups A, with the same composition factors on L(G)
have the same labelled diagram (see [LS2, Theorem 7.3]). Thus Theorem 7
is closely related to Theorem 4 in the A; case.

Theorem 8 Let X;,X, be closed connected simple subgroups of G of the
same type, and of rank at least 2. Assume that X; and X5 have the same
labelled diagram, and that p=0 or p > N(X1,G). Then with two exceptions,
there is a subsystem subgroup Y of G such that

(t) Y contains X and a conjugate X§ of X,

(ii) Y is minimal subject to containing X,, and

(iit) X, and X§ are conjugate in AutY.

In the exceptions, G = E; (resp. Eg), X; & X, & A, and X1, X3 lie in
subsystem subgroups As, AL (resp. A2As, DyDy).

In the last sentence of Theorem 8, A5 and A} are representatives of the
two conjugacy classes of subsystem subgroups of type As in E.
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The geometry of traces in Ree
Octagons
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Abstract

In this paper, we prove some geometric properties of traces of per-
fect Ree octagons. It is shown, for instance, that a derived geometry
can be defined and that it is isomorphic to the generalized quadrangle
T3(0) of Tits- type, where O is a Suzuki-Tits ovoid.

1 Introduction

Generalized polygons were introduced by TITS [6] and have since then been
studied by several authors. The main examples arise from groups of Lie type
or their twisted analogues. A great deal of research concerning polygons is
devoted to characterizing these Lie polygons in a geometric fashion. One
of the most beautiful and complete results in this direction is RONAN’s [4]
characterization of all Moufang hexagons by ideal lines. Also various classes
of “classical” generalized quadrangles, mainly finite ones, are characterized
by the same idea of looking at intersections of traces. No such characteri-
zation of the Moufang octagons is known. From a geometric point of view

*Research Associate at the National Fund for Scientific Research (Belgium)
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however, it is already an interesting question to ask what kind of properties
traces have in the Moufang octagons. We will answer this question in the
present paper for a large subclass of Moufang octagons, thus establishing the
geometric foundation necessary to reconstruct the ambient metasymplectic
space for these geometries, which should eventually lead to a geometric char-
acterization of all such octagons. We will briefly sketch at the end of the
paper how to do this.

2 Notation

We will assume that the reader is familiar with the definition of a generalized
polygon, in particular a generalized octagon. Also, we will use some common
building terminology such as opposite elements for 2 points or 2 lines at
maximal distance; the projection of an element z onto a non-opposite element
y for the unique element incident with y closest to z (see e.g. TITS [8]). Also,
for any point z, we will denote by ' the set of points collinear to z.

One important class of thick generalized octagons arises from the Ree group
of type %Fy, see TITS [10], and we call the members of this class the Ree
octagons. For every field K of characteristic 2 and every endomorphism o
in K whose square is the Frobenius endomorphism, there exists such a Ree
octagon, which we will denote by Or(K, o). In the infinite case, we also have
some other examples arising from some ‘free’ constructions, see TITS [9).

It is known that the Ree octagon Ogp(K, o) can be viewed as the set of abso-
lute points and lines of a certain polarity in the metasymplectic space over
K, see e.g. SARLI [5]. In the present paper, we want to clear the way for
reconstructing this metasymplectic space entirely in terms of the geometry
of the Ree octagon. This will establish the foundation for a geometric char-
acterization of these octagons, which will be done elsewhere. However, in
order not to drown in notation and technicalities, we restrict ourselves to the
perfect case, i. e. the case where ¢ is an automorphism. The non-perfect case
is — geometrically - very much more complicated and so, in this paper, we
do not want to spend twice as much space for objects only half as important
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(as a figure of speech).

3 The Ree octagon Og(K, o).

The following description of Og(K, ), K and o as in the previous section,
is due to JOSWIG & VAN MALDEGHEM |[2].

Let K be the group on the set of all pairs (ko, k;) € K x K with operation
law (ko, kl) & (lo,ll) = (ko + l(), kl + ll + lokg) For k = (ko, kl), set tr(k) =
kg*t! + ky (the trace of k) and set N(k) = k§*? + kok; + k{ (the norm
of k). Define a multiplication a ® k = a ® (ko, k1) = (ako,a’t'k;). Also
write (ko, k1) for (k§, k7). Then the points of Or(K, o) are the elements of
{()JUKUK@D xKU.. UKD x K x K x K x K x KUK x K x
K x K® x K x K9 x K (and these are all denoted by round parantheses);
the lines of Ogr(K, o) are the elements of {[oo]J UKD UK x KPP U...U
KxKPxKxKI9xKx KPUK?Y xKx K2 xKxK®xKx K?
(and denoted by square brackets); incidence is given by the sequence

(a,,d',V',a", 1" a") I [a,1,d,V,a"l"| I (a,1,d',l",d") I ...
c..(@) I'[oo) I (c0) I[k] T (k,b)T ...
oo [k, b KLY R T (Kb K KT Y T (Kb KRBT KM,

and the rule : (a,l,a’,!';a" 1" @) is incident with [k, b, k' ¥ k" b’ k"] if
and only if the following six equations hold:
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bII

(ka, k')

bl

(Ko, k1)

where a,a’,a”,a" b,¥," € K and k& k' k" [V 1" € K® and k =
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(lo,h) ® a®(ko, k1) ® (0,aly +a°ly) (I1)

a' + a’tIN(k) + ko(aly + a°lf + tr(])
+a’(a" + lok1) + alg® + lolf (12)

a® @ (ky,tr(k)N(k)) & ko ® (lo,1h)°

® (0,tr(k)N(1) + a® N (k)°

+tr(k)(ad’ +a’lolf +a°*1a")

+tr(D)(kZa + o) + kZ a1 + kG a2lle

+ko(a’' +aly? + kyaly + a®a)’

+k§lo(a’' + alf’ + k1a%ly + a®a’")

+a(lil + clllla'l0 + allll(l])

+ig(a' +a°a™) + a”ly + Llly)

® (I, 1) (I3)

a” +a’ttN(k)’ + a(koly + loky + a™')°
+tr(k)(ly + a°l)
+k§(a' +a%a™) + g + 1§a™ (14)

(15, 1) ® a® (tr(k),koN(k)?) & lo® (ko, k1)’
® (0, N(k)(a’lg + 1)

+k0(a” + lal:)l + aall’o’ + lga”l)

+ki(kiloa® + a’ + alf® + a°a’)

+hokZals + a1y + a1, (I5)
" + aN(k) + loky + kol! (I6)

(ko, k1), etc. These elements are called the coordinates.

This description is also valid in the non-perfect case. From now on how-
ever, we will assume that K is perfect.
GF(2%2¢+1). In the latter case, the corresponding generalized octagon is de-

noted by Opg(22¢*1).

This includes every finite field
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Note that every Ree octagon has a lot of automorphisms (it has the Moufang
property and it is characterized in this way, see TITS [10]). In particular, the
twisted Chevalley group ?Fy(K, o) is an automorphism group of Og(K, o).
It acts transitively on the set of opposite pairs of points, and also dually, on
the set of pairs of opposite lines. The stabilizer of a pair of opposite points
acts on the set of lines incident with either one of these points as a doubly
transitive automorphism group of a Suzuki-Tits ovoid (see next section) and
the stabilizer of a pair of opposite lines acts on the set of points of either one
of these lines as PGLo(K). We will use these properties in order to choose
certain arbitrary elements in a suitable way “without loss of generality”.

4 Geometric properties of Og(K, o)

4.1 Properties of the Suzuki-Tits ovoids

Let W(K) be the symplectic generalized quadrangle over K, i. e. the gener-
alized quadrangle arising from a symplectic polarity 7 in PG(3, K). Let p be
a polarity in W(K), then it is known that the set of absolute points (resp.
lines) of W(R) (i. e. the points (resp. lines) incident with their image under
p) forms an ovoid Ogr (resp. spread Sc) in W(K), called the Suzuki-Tits
ovoid (resp. Lineburg spread), see TITS [7]. Let 7 be a plane of PG(3, K). It
is easily seen that the intersection of = with Qs is exactly the set of points
of Ogt collinear in W(K) to the point #7. We call such a set a circle. Now,
every three points of Ogs determine a unique plane, and hence a unique
circle. So we obtain an inversive plane. But the Lineburg spread puts an
extra structure on this inversive plane, indeed, given a circle C lying in the
plane 7, the point 77 is incident with a unique element M of S;. And M
is incident with a unique point z of Ogs7, which belongs to C. Hence every
circle C contains a special element x which we will call the corner of the
circle and denote by 0C. We list now some immediate properties.

LEMMA 4.1 Let Ost be a Suzuki-Tits ovoid and let x € Ogr. Let Cy be
the set of circles C with 0C = z. Then the C \ {z} partitions Os7 \ {§}.
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In other words, any circle is uniquely determined by its corner and a second
point, and, conversely, every pair of points (z,y) in Osr defines a unique
circle C such that y € C and 0C = z.

LEMMA 4.2 Let Ogt be a Suzuki-Tits ovoid and let ¢ € Og1 be the corner
of a circle C. Let D¢ be the set of circles C' with 0C =y € C \ {z} and
z € C'. Then the C'\ {z} partitions Os1 \ {§}.

PROOFS. Every circle is determined by a point « in W(K), u ¢ Os7. For
the first lemma, let u vary along the line z# of S; for the second lemma, let
u vary along the line y?, where y is the point of W(K) defining C.

REMARK. Lemmas 4.1 and 4.2 allow one to reconstruct W(K) in a more
axiomatized setting.

Following TITs [7], we can describe Ogs7 by the set K¥ U {oo}. Using,
e.g., the coordinates in HANSSENS & VAN MALDEGHEM [1], one calculates
that the circle containing oo, (0,0) and (ko, k1), ko, k1 € K, contains, besides
00, all points (tkg,tk;), t € K. The circle containing (0,0) with corner oo
contains, besides oo, the points (0, k), k1 € K. By the action of the Suzuki
group, one obtains the other circles. But we will need no explicite description
of them.

Now let L, and L» be two elements of the Liineburg spread S and let z; I L;,
1 = 1,2, be the corresponding points of the Suzuki-Tits ovoid Ogr. The set
of lines in the quadrangle W(K') meeting all lines which meet both L, and L,
is a regulus R and each element of R is incident with one point of Os7. The
set T of these points will be called a transversal with extremeties £, and z,.
It is completely determined by z; and z5. Now consider the set {z;,z5}*+
of points colinear to all points collinear to both z; and z; (this is the span
of z; and z3, see PAYNE & THAS [3],p.2) and let y € {z1,z2}11 \ {z1,22}.
The circle C defined by y (via intersection with y”) has as corner a point
incident with y?; but y* € R, hence the corner of C lies in 7. Now note
that the plane y” contains all points of the hyperbolic line H consisting of
all points collinear to both z; and z; and H does not meet the ovoid. Hence
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the set of circles defined by the elements of {z;,z2}** \ {21, 22} partitions
Osr \ {z1,z2} and the set of corners of the circles is the transversal 7. We
logically call this partition the transversal partition with extremities z, and
Ty.

Following HANSSENS & VAN MALDEGHEM [1], we can take for the symplec-
tic polarity p the bilinear form

ZToy1 + Z1Yo + Zays + Taya.

We choose z; = (1,0,0,0) and z, = (0,1,0,0). The line H is determined
by (0,0,1,0) and (0,0,0,1). The Suzuki-Tits ovoid can be chosen to contain
the points (see [1],5.6)

{(N(k), 1, k1, ko) |k = (ko, k1) € KD} U {(1,0,0,0)}.

It is then clear that a circle of the transversal partition described above
contains the points

{(N(k),1,ky, ko)|N(k) = Constant}.

Since every line of PG(3, K) which is not a line of W(K) meets Og7 in either
two or zero points, the following lemma is readily verified.

LEMMA 4.3 Let z be a point of the Suzuki-Tits ovoid Ost and let C be
a circle of Ogr not containing x. Then there erists ¢ unique transversal
partition containing C and having = as one of ils extremities.

A Suzuki-Tits ovoid with the additional structure of the inversive plane,
corners for all circles and transversal partitions for each pair of points will
be called a Suzuki-Tits inversive plane, or briefly, an STi-plane.

4.2 Properties of Or(K,0)

Let Or(K,o) be the perfect Ree Octagon described in section 3 (i.e. K is a
perfect field). The lines through the point (0o0) are parametrized by the set
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K®u {o0}. By the preceding paragraph, we can give this set the structure
of an STi-plane P4, (in an algebraic fashion). We will now reconstruct Pqq)
geometrically. Note that, by transitivity, all points p define an STi-plane P\/.

Let p be a point of Og(K, o) opposite (00). Clearly p has seven coordinates.
The trace of p, denoted by (c0)?, (with respect to (00)) is the set of projections
of p onto the lines incident with (c0). Let o be the point with coordinates
(0,0,0,0,0,0,0) and suppose p has coordinates (a,l,a’,!',a",1",a"). The
set of lines incident with (co) and with one of the points of the intersection
(00)° N (c0)? will be called the support of that intersection and, by (I6), it
consists, besides possibly [00], of all lines [k], k € K{?), such that

f(k) = a"” + aN(k) + l(]k]_ + kﬂlg = 0. (*)

If @ = 0, then [0o] belongs to the support. So assume a # 0. Put L =

(Lo, L1) = (%2, %), then we have f(k@® L) = aN(k)+ f(L). We deduce from
-1

this that k¥ = (Lo, L1 + (ﬂaﬂ)a ) is a solution of (). Hence we have shown

that every two traces meet in at least one point. Without loss of generality

we can take this point to be (0), i. e. p = (0,[,a',V,a”,l",a"). For any

further points in the intersection, the equation (*) reduces to

a" + lgkl + lgkg =0. (**)

Iy =1 =a"” =0, then the two traces coincide; if [y = I = 0 and o’ # 0,
then the two traces meet only in (0); if ({p,lf) # (0,0), then clearly, the
set of lines through (co) incident with a point of (00)° N (c0)? is a circle C
in P(e) and by the transitivity of the stabilizer of (o), all circles of P
arise in this way. So without loss of generality, let us consider the circle
C = {[oo]} U{[(0, k1)]|k1 € K'}. The set of points p such that the support of
(c0)? N (00)? contains C is, by (16), equal to

{(0,(0,1),d',I',a", 1",0)|lh, ', a” € K, I, I" € K\P}.

The projection of the point ¢ = (0,(0,#),a’,7,a”,1”,0) onto the line [0] is
the line [0,0,#'], hence every line through (0,0) (except for [0] of course)
arises in this way. This remains true for all points ((0, k1), 0), by transitivity.
However, the projection of q onto [0o] is the line [0,(0,/)], and here, not
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all lines arise. In fact, only lines of a circle in P(,) with corner [oo] arise.
This characterizes the corner of C in a geometric fashion. It also follows
that the corner, defined in this geometric way, is independent of the chosen
intersection of traces with C as support. We will call the intersection of two
traces frivial if it contains only one element, or if the two traces are equal.
Let X be a non-trivial intersection of two traces. We shall refer to the set
of lines M through € X such that M is the projection of a point p whose
trace contains X the gate set with respect to Xthrough x. We say such a gate
set is trivial if it contains all lines through z except its support. Then we
can summarize the above results as follows:

LEMMA 4.4 Let z be any point of a perfect Ree octagon. Consider traces
with respect to . Then two traces always meet. If two traces X and Y meet
non- trivially, then there exists a unique point u in X NY such that the gate
set of u with respect to X NY is non-trivial. The line zu thus obtained from
the support C of X NY is independent of the choice of X NY. If we define
uz to be the corner of C, then the set of all such supports, together with their
corners define an STi-plane over the set of lines through = (the transversal
partitions will follow from Lemma 4.7).

Now consider again traces with respect to (c0). Suppose we are given 4 pair-
wise non-collinear points collinear to (co0) and such that the 4 respective pro-
jections onto (oo) do not lie on one circle of P« (this defines a general posi-
tion for 4 points collinear to one fixed point). We can take without loss of gen-
erality the points (0), (0,0), (k,b) and (k*,b*), k,k* € K{?, b,b* € K, with
k = (ko, k1) not proportional to k* = (kg, k7). If p = (a,l,a',l',a",1",a")
defines a trace containing these 4 points, then its coordinates must satisfy
a=a"=0,b=lk, + lfko and b* = lgk} + ljkg. It is clear that under the
given assumptions these equations define uniquely a pair (ly,jj), and hence
we have shown:

LEMMA 4.5 Let z be any point of a perfect Ree octagon, then there is a
unique trace containing 4 points in general position collinear to x.
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Suppose now two traces (with respect to (oo)) meet in exactly one point, say
(0). Using (I6), one can check that, if one trace is defined by o, then the other
must be defined by a point p with coordinates (0, (0,1,),d',¥,a", (0,1}),a")
with @ # 0 and consequently it consists of the points (k,a"), k € K(?.
So the set of traces meeting (c0)° in only (0) is a set of traces with trivial
intersection. We call such a set a pencil of traces based at (0). We have
shown:

LEMMA 4.6 Let z be any point of a perfect Ree octagon and let X be a
trace with respect to . For every point y € X, there exvists ¢ unique pencil
of traces based at y and containing X .

Next, we look at intersections of pencils. Let £, and & be two pencils of
traces based at respectively (0) and (0,0), both containing the trace (c0)°.
Put v = (0,0,0,0,0,0,¢") and v = (a,0,0,0,0,0,0). Then (c0)* and (co0)"
are arbitrary elements of £ and &. They meet on the line [k], k € K(?,
if and only if a"” = aN(k) (by (I6) again). Hence their intersection is non-
trivial and the support is a circle defined by N(k) = a’’/a =constant. This
shows that the set of supports of the intersections is the transversal partition
with extremities the lines [00] and [0]. Hence the lemma:

LEMMA 4.7 Let = be any point of a perfect Ree octagon and consider, with
respect to ¢, two pencils (based at resp. y, and y,) sharing a common trace
Y. Then the set of supports of all intersections of elements of one pencil with
elements of the other pencil (excluding Y) is the transversal partition in Py
with extremities zy, and zy,.

As a consequence we have:

COROLLARY 4.8 There do not exist three distinct traces (with respect to
a fized point) in Op(K, o) with pairwise trivial intersection and not contained
in a pencil.
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Now we can define the following geometry Og(K,o), for any point z of
Or(K, o). The points are of two types :

(i) the traces with respect to z,

(ii) the points collinear to z in Og(K, o), including z itself.
The lines are also of two types :

(a) the pencils of traces (with respect to z),

(b) the lines of Og(K, o) through z.

The incidence between points of type (i) (resp. type (ii)) and lines of type
(a) (resp. type (b)) is containment (resp. the incidence in Og(K,o)). No
point of type (i) is incident with a line of type (b). A point of type (ii) is
incident with a line of type (a) if the pencil in question is based at the point
in question. Incidence in Og(K, o), will be denoted by I,.

PROPOSITION 4.9 The geometry Or(K, o), as defined above is the gen-
eralized quadrangle of Tits-type T3(OsT).

PROOF. We give a geometric proof using the lemmas above. A group-
theoretic proof or another algebraic one is also possible. For instance, one
can coordinatize Ogr(K, o), to identify it. Or one could determine the au-
tomorphism group of this geometry inside the stabilizer of a point of the
automorphism group of Og(K,o). One would find an affine group with a
Suzuki group acting.

We first show that Og(K, o), is a generalized quadrangle. Let II and A be
a point and a line of Ogr(K, o), which are not incident. We have to show
that there is a unique point II’ I, A, and a unique line A’ I, II such that
II' I, A’. Suppose first that II is of type (ii) and A is of type (b). Then
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I, MI; z 1, A, where M is the line in Og(K, o) joining II and z, and
this path is unique. Suppose now II is of type (i) and A is of type (b). Then
there is a unique point p in Og(K, o) incident with the line A and contained
in the trace II. There is also a unique pencil A’ of traces based at p and
containing II, by Lemma 4.6. Again we have Il I, A’ I, p I, A and no other
such path exists. Next, let II be of type (ii) and A of type (a). Let A be based
at pp H Il =z, then I I, zp I, p I, A. Suppose now Il = y is distinct from
z. If y is collinear to p in Og(K, ), then clearly II I, zy I, p I, A; if not,
then II I, A* I, X I, A, where X is the member of the pencil A containing
y, and A* is the pencil of traces based at y and containing X. Finally, suppose
II is of type (i) and A is of type (a). Let A be based at y. If y € II, then
M1, A* I; y I, A, where A is the pencil of traces based at y and containing
II. If y ¢ 11, then by Corollary 4.8, there exists at most one member of the
pencil A meeting the trace II trivially. We now show that there exists at
least one such element of A. Let X be any member of A. Suppose that X
meets II non-trivially (otherwise we are done) and let ' be the support of
the intersection C. So C is a circle in P;. By Lemma 4.3, there exists a
unique transversal partition of Py containing C' and having zy as one of its
extremities. Let M (a line in Og(K, o) through z) be the other extremity
and let p be the unique point incident with M and lying on the trace II. Let
A* be the pencil of traces containing II and based at p, and Y be the unique
member of A* containing y. let A** be the pencil of traces containing ¥ and
based at y. Then by Lemma 4.7, there exists a trace Z € A™ meeting II in
C,hence A** = A, Y € Aand YNII = {p}. Soll I, \* I, Y I, A. We leave
it to the reader to check that no other such paths exist and hence Or(K, o)
is a generalized quadrangle.

We still have to show that Ogr(K, o), is isomorphic to T3(Os7). If K is
a finite field of order 22°*+!, it follows from PAYNE & THAS [3],5.3.1 that
ORg(22¢11), is isomorphic to some T3(0), O an ovoid in PG(3,q) since the
point z of Og(22¢+!), is a 3-regular point (this can be verified easily). From
the first part of the proof of 5.3.1 of loc.cit., it follows that O is the Suzuki-
Tits ovoid Ogssr. In the infinite case, one has essentially the same proof,
replacing some counting arguments in 5.3.1 of loc.cit. by arguments using
the lemma’s of this section. Alternatively, an algebraic proof goes as follows.
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The map
ot = ot i (k,b) > (k,b+ A" + AN(K) + Loky + Liko)

defines an automorphism of P(oo) (this follows from (I6)). The group Q of
all such maps is isomorphic to K x K x K x K, +, where the above element
corresponds to (A", A, Lo, Ly). But € acts regularly on the set of traces
(this is immediately verified), hence we can put the structure of the affine
space AG(4, K) on the set of traces in (co)* (induced by ). One can easily
check that the set of lines of Og(K, o), of type (a) are all lines of that affine
space of certain parallel classes, and these parallel classes determine exactly
a Suzuki-Tits ovoid at infinity.

REMARK. In the finite case, the above proof simplifies. Indeed, a counting
argument replaces the use of L.emma 4.3, Lemma 4.7 and Corollary 4.8,

5 The metasymplectic space M(K)

Dual traces.

One can also ask what the geometry of the dual traces look like (defined
dually). From the relation (I1), we can deduce the following. Let L be a
line of Og(K, o), , and z5 two different points on L and L;, Ly two lines
incident with z, resp. z3, not equal to L. Let Cj;, i = 1,2, be the circle in
Py, with corner L and containing L;. If M is a line, varying over the set of
all lines whose (dual) trace with respect to L contains an element of C; for
¢ = 1,2, then the set of lines contained in the trace of M and incident with
any point z of L varies over a circle C' in P with corner L. We call the
set of lines of traces with respect to L of all such lines M a Suzuki regulus.
These sets will play an important role in the reconstruction of the ambient
metasymplectic space for Or(K, o).

One further property of traces.
Let z be any point in Og(K, o) and let p be any point opposite z. Let G
be the set of points y opposite z such that z¥ = zf. We define a graph on
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G by the rule: two points of G are adjacent if they are not opposite each
other. One can show that two such points have distance 6 in the octagon
and the unique middle element of the shortest path joining them has distance
5 to z. The graph G is not connected, in fact, it has exactly |K| connected
components. A connected component of G will be called a trace direction.

The reconstruction.

We briefly sketch how one can now reconstruct the ambient metasymplectic
space M(K). The points of M(K) are of three types. Type (I) consist of
the points of the octagon Og(K, o) itself. The points of type (II) are the
Suzuki reguli. A point of type (III) is a trace direction. The lines and planes
must then be defined using the properties of traces listed in this paper. The
hyperlines then follow rather easily, as well as the polarity. This will be
proved in detail elsewhere.
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Small Rank Exceptional Hurwitz Groups
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A group G is called a (2, 3)-group if it can be generated by an involution and
an element of order 3. This is equivalent to saying that G is a factor group of
PSL9(Z), which is the free product of two cyclic groups of order two and three.
Thus every (2, 3)-group corresponds to a normal (in general: non-congruence)
subgroup of SLy(Z). There has recently been some interest in determining
the (2, 3)-generated finite simple groups (see for example [3,13,14]). In this
paper we consider the exceptional groups of Lie type 3D4(q) and 2F4(22""'1).

Theorem 1: The groups 3D4(q) and 2F(227*1Y are factor groups of the
modular group PSLa(Z). Here q is any prime power.

A finite group G is called a Hurwitz group if it is a factor group of

Ga,3,7 = (01,02,03 | of = 08 = 6] = 510903 = 1).
The interest in such groups stems from the fact that they can be represented as
a group of 84(y—1) automorphisms of a Riemann surface of genus . Hurwitz
showed that this is the biggest possible value for the order of a group acting
on a surface of genus v > 2. For an introduction to the present knowledge
on Hurwitz groups see the recent overview (1] or also [3]. Clearly a Hurwitz
group is (2, 3)-generated. In [8] we showed that the groups Ga(q) for ¢ > 5
and the groups %G(32"*1) are Hurwitz. Here we extend this result to the
Steinberg triality groups 3D4(q) and to some of the Ree groups 2Fy(22°+1),
Together with the results in [8] this completely determines the Hurwitz groups
among simple exceptional groups of Lie type of rank at most 2.

Theorem 2:
(a) The group 3D4(q), q = p", is a Hurwitz group if and only if p £ 3, ¢ # 4.

(b) The group 215‘,4(22""'1)' is a Hurwitz group if end only ifn =1 (mod 3).

The author gratefully acknowledges financial support by the Deutsche Forschungsgemein-
schaft
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(This in particular implies Theorem 1 for the groups 3D4(q), p#3,q#A4,
and also for 2Fy(22"+1) with n =1 (mod 3).)

The method of proof is similar to the one employed in [8]. To show (2,3)-
generation (resp. (2,3, 7)-generation) of G we first calculate a structure con-
stant from the ordinary character table of G. Then information on the maxi-
mal subgroups of G is used to rule out the possibility that all such (2, 3)-pairs
(resp. (2,3, 7)-triples) generate proper subgroups. Since this was already de-
scribed in (8] in some detail, we will not repeat the precise description.

We remark that the calculation of structure constants was carried out with
the computer algebra system CHEVIE [5], which contains the generic char-
acter table of the groups 3Dyg(q) (as first published in [4]) and of 2Fy(227+1)
(computed from the results in [7]).

1 The groups 3D4(q)

In this section we prove that the Steinberg triality groups G := 3Dy(q),
qg=p", p+#3,qF#4, are Hurwitz groups, and that the remaining groups are
(2, 3)-generated. For this we first have to know the classes of involutions, of 3-
elements and of 7-elements in G. The unipotent classes of G were determined
by Spaltenstein [12], while the semisimple ones can be found in [4]. With
these references one easily checks the following facts:

Lemma 1: (a) If p # 2 then G has a single class of involutions, with
centralizer order q4(q? — 1)(¢% — 1).

(b) If p # 3 then G has two classes of elements of order three, with centralizer
orders (g% — 1)(¢® — €)(¢% + e + 1), resp. ¢3(¢® —1)(g —¢), where g = ¢
(mod 3), e € {1,~1}.

(c) If p# 7 then G has a single class of regular elements of order 7.

Proof : The first two assertions readily follow from the tables in [4]. If
g = 2,3,4 or 5 (mod 7), then a 7-Sylow subgroup of G is contained in a
maximal torus T of G of order (g2 + ¢ + 1) resp. (g2 — ¢ + 1)2. These
tori have a relative Weyl group of order 24, and from the action given in [4,
Table 1.1], it follows that there exists a single regular class in T' containing
elements of order 7. If ¢ = £1 (mod 7), the 7-Sylow subgroups lie in tori
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T of order (¢% — 1)(g — 1) resp. (¢ + 1)(¢g +1). Of the 48 elements of
order 7, 36 lie in subgroups centralizing a root subgroup. The remaining
12 elements are fused into a single class of regular elements by the Weyl group
W = S3x Zs. Alternatively, this follows from the embedding Ga(g) < *D4(q)
and an application of Proposition 1 in [8]. ]

If p # 2 we write 2A for the class of involutions, 34 and 3B for the two classes
of 3-elements (where 3A-elements have centralizer order ¢3(q + €)(¢® — €)2) if
p # 3, and TA for the class of regular 7-elements if p # 7. The strategy is now
to prove that there exist triples o] € 2A, o9 € 34, 63 € TA with 010903 =1
generating G. For this we need a further preparatory lemma.

Lemma 2: Let (01,09,03) be a (2,3,7)-system of 3D4(q) with 010903 = 1.
If2 Jq, or2|q and 63 € TA, then (01,09,03) is not contained in ¢ maximal
parabolic subgroup.

Proof : By [6] the maximal parabolic subgroups of 3D4(q) have the structure
P =[¢%: (SLa(¢®) o 4—1)-d respectively Py = [q1] : (Zg3—1 0 SLs(q)).d,
where d = ged(2,9 — 1). Here [n] denotes a group of order n of unspecified
structure, as in the Atlas notation [2]. Since a Hurwitz group is necessarily
perfect, if (o1, 09,03) is contained in one of those parabolic subgroups, then
already in the commutator subgroups P| = [¢°] : SLy(¢3) respectively Pj =
[¢11] : SLa(g), and we have g # 2,3. Now first assume that 2 J¢. Then we
use that the factors of the above commutator subgroups by their unipotent
radicals would also have to possess a (2,3, 7)-system. This is a contradiction,
as § L2(q3) and SLy(q) both contain a single, central involution, which can
thus not lie in a (2, 3, 7)-system.

If p = 2 and o3 € TA, then we may first exclude PJ, as this is the centralizer of
a p-element, hence in particular can not contain regular semisimple elements.
In the second case, a 7-Sylow subgroup of Pj is necessarily cyclic, so any 7-
element is conjugate to one in the complement SL3(g). But this complement
centralizes a p-element lying in a short root subgroup, hence its semisimple
elements are again not regular. n

Let C = (C1,C3,C3) be a class vector of the finite group H. We write n g(C)
or simply n(C) for the normalized structure constant of C (see for example
[8]), and £(C) for the number of generating triples in C with product 1 modulo
conjugation. See [8] for the connection between n(C) and ¢(C).

Proposition 1: Theorem 2(a) holds for p # 2,3,7 and the class vector
C =(24,3A,74).
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Proof : The normalized structure constant n(C) of C = (24,34, 7A) can be
calculated from the ordinary character table of G. This calculation is most
easily done with the computer algebra system CHEVIE [5], which contains
the generic ordinary character table of the groups 3D4(q). The results are
collected in Table 1. (They depend on the congruence classes of ¢ modulo 3
and 7.)

Table 1: The (2,34,7A) normalized structure constants in 3D4(p"), p # 3,7.

g= | 1 (mod7) |-1 (mod7)|2,4 (mod 7)|3,5 (mod 7)
1 (mod 3) P+l 1 -2+1¢?-3¢+1 | ¢?+q+1
-1 (mod3) | ?+2¢+1 | ?+1 | ¢2—qg+1 | +3¢+1

Note that this shows %qQ < n(C) < 2¢? for p # 2,3,7, ¢ # 5. It now remains
to check that £(C) # 0, i.e., not all of the structure constant can be accounted
for by the contribution of proper subgroups. For this we make use of the list of
maximal subgroups of G in [6]. In Table 2 we list the maximal subgroups of G
which might contribute to the (24,3A, 7A)-structure constant, i.e., which are
non-solvable and have order potentially divisible by 42. (We have omitted the
parabolic subgroups, since these can not contain a triple from C by Lemma 2.)

Table 2: Some maximal subgroups of 3D4(q), ¢ =p", podd.

K occurs for ng(2,3,7)
Ga(q) always 0
PGL3(q) g=1 (mod 3) <6
PGU3(q) g=-—1 (mod 3) <6
(SLa(g3) 0 SLa(q)) -2 always <18
(2 + ¢ +1) 0 SL3(q))-f+-2 always <3
((¢% — ¢ +1) 0 SU3(q))-f- -2 always <3
3D4(q0) g=¢b, 3#teP < 243

Here fe := ged(3,¢% + eq + 1).

The last column gives an upper bound for the contribution to n(C) possibly
coming from this class of maximal subgroups. This is obtained as follows.
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In Ga(q) there are two classes of 3-elements, with centralizers SL3(g) and
SLa(q)(g — 1) if ¢ = 1 (mod 3), respectively SU3z(q) and SUa(g)(q + 1) if
= —1 (mod 3). Of these, the first one fuses into the class 34 of G. But
the structure constant of Go involving this first class is seen to vanish using
CHEVIE. The contribution from the remaining groups can also be computed
from the generic character tables [5), respectively from Table 1 for 3Dy(gp).

First assume ¢ = 5. Then n(C) = 40 by Table 1, while the proper subgroups
contribute at most 30 by Table 2. If ¢ = 25 one also checks that £(C) > 1. For
g = p > 11 we have n(C) > 1/2¢% > 60, which is larger than the structure
constants coming from proper subgroups. Finally, if ¢ = p", n > 2, we write
n = [15_; t5%, so that the subfield subgroups 3D4(q0) contribute at most

i=1%>
r r
Z 2p2"/t‘ < Z 2p™ = 2rp".
i=1 i=1

Thus there remains at least
{C) > %p2" - 2rp™ - 30 = %p"(p" —4dr—e)>1,

with some € < 1 since p™ > 121, for the number ¢(C) of generating Hurwitz-
triples. This achieves the proof. [

For p = 7 let TU be the class of regular unipotent elements, which by the
description of the elementary divisors of unipotent elements in the overgroup
Dn(g®) = OF (¢%) of 3Dy(g) have order 7.

Proposition 2: Theorem 2(a) holds for p = 7 and the class vector C =
(24,3A,70).

Proof : The normalized structure constant of C, computed with CHEVIE, is
displayed in Table 3.

Table 3: The (24,3 A, 7U) normalized structure constants in 3D4(7").

g= | 1 (mod3) | -1 (mod3)
| a1 | ag+D)

The maximal subgroups which could possibly contribute to this structure con-
stant are contained in Table 1. Again, the corresponding structure constant
in G9(q) vanishes. It is an easy exercise to check that the contribution from
subgroups is always strictly smaller than n(C). [
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Proposition 3: Theorems 2(a) and 1 hold for 3D4(3").

Proof : We first show that all (2,3, 7)-triples of G generate proper subgroups.
By Lemma 1(a), G has a single class of involutions. The (unipotent) classes
containing elements of order 3 are Aj, 341, A5 and Aj in the notation of
[12]. In Table 4 we tabulate those (2,3, 7)-structure constants which are at
least 1; the remaining ones can not come from generating triples anyway. In
particular, it turns out that only the regular class 7A of 7-elements is involved
in possible candidates.

Table 4: The (24,3,7A) normalized structure constants in 3D4(3").

g= | 1 (mod7) | -1 (mod7) | 2,4 (mod7) | 3,5 (mod 7)
34; 1 1 1 1

Ay |bag+2) -6+ Ra@-2) [dala-1)—64| dala+1)
Aj Yaa+2) |dalg-2)-6-| da(¢—1) |dalg+1)-4

Here 64 = (¢ +q)/(¢* + ¢+ 1) and 6_ = (¢® - ¢)/(¢® — ¢ +1). The
interesting maximal subgroups are listed in Table 1. It turns out that the
corresponding (2,3, 7)-structure constants in the maximal subgroup Ga(g)
are the same as those displayed in Table 4, up to the summands —§.. We
now compare the centralizers of (2,3, 7A)-triples in Ga(g) and 3D4(q). If the
centralizer increases in 3D4(q), then by Table 2 the Hurwitz triple must lie
inside ((¢% +eg+1) x L§(g))-2, where ¢3 = ¢ (mod 7), since 7A-elements are
regular. (Here we write LF(q) := L3(q), L3 (¢) := Us(q).) But the (2,3,7)-
structure constant of L§(q).2 equals 1 if ¢ = ¢ (mod 7). Thus passing from
Ga(g) to 3D4(q), the centralizer increases for precisely one Hurwitz triple, by
g° + €g + 1, so the contribution to the structure constant decreases by
1 1 =§
TP teg+l

Hence all Hurwitz triples in Table 4 come from G3(g), and G can not be a
Hurwitz group.

To prove (2,3)-generation, we calculate n(24, A, [s14]) = g(g — 1)/2, where
s14 is a representative of the regular elements in the maximal torus of order
¢* — ¢% + 1. By [6], any such triple generates G. ]

For p = 2 let 2U be the larger of the two classes of involutions of G, denoted
by 34; in [12].
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Proposition 4: Theorems 2(a) and 1 hold for 3D4(2™) and the class vector
C =(2U,34,74).

Proof : The structure constants in this case turn out to be the same as for
p # 2,3,7, so are also given by Table 1. The maximal subgroups which could
possibly contribute to n(C) are as follows (see [6]):

Table 5: Some maximal subgroups of 3D4(2").

K occurs for nk(2,3,7)
Ga(q) always 0
PGL3(q) g=1 (mod 3) <3
PGU3(q) 2<¢=-1 (mod 3) <3
Ly(g®) x La(q) always <10
((¢®> + g +1) 0 SL3(q))-f+2 always <3
(¢ — g+ 1) 0 SUs(q))-f 2 always <3
3D4(q0) g=qh), 3#teP < 2q3

If ¢ = 2 we have n(C) = 3, but none of the maximal subgroups contains
elements from 2U,3A and 74 [2]. For ¢ > 8, the usual estimate works. Now
let ¢ = 4. Then n(C) = 5, of which 3 already comes from the subgroup
3D4(2). It is then clear that C contains no generating triples, since the outer
automorphism group of order 6 would have to act faithfully on those. (In fact,
the remaining two triples lie already inside the maximal subgroup PGL3(4).)
The structure constant n(2U, 3B,7A) with the second class of 3-elements 3B
equals 16 and is the only other (2, 3,7)-constant not smaller than 1. But in
Go(4) we have ng,(2B,3B,7A) = 16, originating from J; and L2(13) [8, §6].
Since these two subgroups have trivial centralizer in G as well, they account
for the total structure constant in G. It follows that 3D4(4) is not a Hurwitz
group. But n(2U,3A4,241A) = 13, where 2414 is a class of elements of order
241 = g% — ¢%2 + 1, and it is easily verified that this gives a (2, 3)-generation
of 3Dy(4). .

2 The groups 2Fy(q?)

In this section we study G := 2Fy(¢?), ¢2 = 22"t! with n > 0. The order of
G is ¢*(q? —1)(¢® +1)(¢® —1)(¢'2 + 1) and hence divisible by 7 if and only if



180 MALLE: Small rank exceptional Hurwitz groups

3|(2n+1),son =1 (mod 3). We take the notation for Steinberg generators
and for representatives of conjugacy classes of G from [10]. Let 2B be the
class of the unipotent element ag(1), with centralizer order ¢?0(¢* — 1),
3A the unique class of elements of order three with representative t4 and
centralizer order ¢%(¢* — 1)(q6 +1), and 7A a class of elements of order 7 with
representative t9 and centralizer order (12(q2 —1)(¢% - 1).

Proposition 5: Theorem 2(b) holds with the class vector C = (2B,3A,7A).

Proof : It was already noted above that | 2F4(227+1)| with n £ 1 (mod 3) is
not divisible by 7, hence can not be a Hurwitz group. So now let us assume
n=1 (mod 3). From the CHEVIE table [5] of G = 2Fy(¢q?) one calculates
the structure constant n(C) = ¢* +¢% +1 + Fl—_l Next we have to determine

the contribution coming from proper subgroups. The non-solvable maximal
subgroups of G with order divisible by 3 are the following [9]:

Table 6: Some maximal subgroups of 2Fy(¢?), ¢ = 227+1,

K occurs for ng(2,3,7)
[¢%2): (L2(g?) x (¢% - 1)) always 2 +1+ Pl—_l
SU3(‘I2)3 2 always <3
PGU3(‘I2)12 always <3
Spa(g?):2 always 1
Fy(a) P=qg teP < 34t

The result follows from the upper bounds for ng(2,3,7) in this table by a
calculation as for 3D4(q). So it remains to deduce these bounds.

For the subgroups SU3(q2):2, PGU3(q2):2 and Sp4(q2):2, this follows from
the generic character tables if we keep in mind that a (2,3, 7)-triple has to
lie already in the commutator subgroup. For the subfield groups 2F4(q(2,) the
upper bound is obtained by induction, since the classes 2B, 34 and 7A of any
subfield group fuse into the same classes in G. We are left with the parabolic
subgroup Py := [¢%2): (L2(q?) x (¢° — 1)). Again, a Hurwitz triple must lie
already inside P, := [¢%2): L2(q2). We determine explicitly all Hurwitz triples
in that group and thus compute the contribution to n(C).

For this it is necessary to work with the Steinberg generators of G as given
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for example in [10]. In this notation we have
Py = U1UsUy - Utz - (U3, ra),

where the U; := {a;(t) | t € F2} are as in [11] and rq is a fundamental
generator of the Weyl group. The Levi factor Lg = (Us,ra) of P, is iso-
morphic to the factor group of P, modulo its unipotent radical Ry(P;) =
UrUqUy - - - Upg. Clearly if (a1, 09, 03) is a Hurwitz triple of P, then so is its
image in P;/Ry(P;). But the Hurwitz triples in Lg & Lo(g?) can easily be
classified: they are all conjugate in L, to a triple of the form

(a3(7raas(1), a3()ra, a3(7))
with ¥ +v+1=0 (i.e., v is an element of order 7 in Fg < Fqg). We have

to count the number of liftings of this to Hurwitz triples of P,. Since the
7-Sylow subgroup of P, is cyclic, we may moreover assume that the lifting of
o1 is again ag(y)rea3(1). So we look for u € Ry(P,) = UUsUy - - - Uyg such
that

(a3(Draw)* =1 and (ag(y)w)®=1. (*)
By the description of the involution classes in P, in [11, (3.3)] we first deduce
that u € Uy---Uys. We distinguish two cases according to whether u €
Us---Ujg or not. In the first case, let

u = as(c1)as(cy)ar(cg)as(ca)ag(cs)aro(cs )i (cr)a1z(es) -
The conditions (*), evaluated modulo the normal subgroup UyUy - - - U1g yield
c1 = ¢z =cq and c1(y + ~%0) = 0, where 6 is the automorphism of Fo2 with
202 =1 (so @ is exponentiation by 2™). But v+ +% = 0 implies 4 = 1, which
is not the case, so we have ¢ = ¢3 = ¢4 = 0. Repeating the calculation with
these new values then yields
u= ag(c5)a10(c§0)a12(cg) , with c5,c8 € qu

Since we may still conjugate this by the centralizer of Lg (which is isomorphic
to Upg.H1g, with a subgroup Hyg of order ¢% — 1 of the maximally split torus
inside P,), this gives a contribution of ¢2/(¢% — 1) to np (2,3,7).

Now assume

u = aycp)as(cr)ag(c2)ar(cs)ag(ca)ag(cs)aro(cs)e(cr)ara(cs)

with ¢y # 0, where after conjugation with h € Hyg we can take ¢y = 1.
Calculation modulo U7Ug - - - Uya then gives

cg=c1+1l, ca=c1
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(note that we already saw that v + 420 % 0). The complete computation
shows that for u to satisfy (*) we need

N CE (Gt )
(v + 72)(+2 + %)’
e = 7'1(c:{€+1 + C1C372€ + 03720 +c1c3 + 165 + cga + cgo) .

Thus there exist ¢* such triples, corresponding to the choices of ¢5,cg € qu.

c6=c%+cl+c%0+cg,+cge,

Under conjugation with Ujg, this leads to a contribution of ¢2 to n(C). This
completes the proof of the table and hence of the proposition. ]

To prove (2, 3)-generation for arbitray n we just alter the third class in the
above class vector C. Namely, let C1 be the class in G of a regular semisimple
element of order ¢4 +v2¢° +¢% +v2g+1, hence a generator of a cyclic maximal
torus T of G of the same order, denoted by ¢17 in [10].

Proposition 6: Theorem 1 holds for 2Fy(22"t1Y with the class vector
C = (2B,3A,Cr).

Proof : Again with CHEVIE one computes the structure constant to be
n(C) = (¢ — Vag* + 3¢ - V2).

Among the maximal subgroups of G, only the normalizer of the torus T

contains elements with order divisible by a primitive prime divisor of ¢4 +

V2P + 2 +v2q+1 [9]. This normalizer is an extension of T' by the cyclic

group of order 12 and thus clearly solvable, while the group generated by

elements from C must be perfect. Hence G is (2, 3)-generated. [
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THE DIRECT SUM PROBLEM FOR
CHAMBER SYSTEMS

Antonio Pasini

1 Introduction

The Direct Sum Theorem for geometries states that a geometry belonging to
a disconnected diagram is the direct sum of subgeometries corresponding to
the connected components of that diagram. No analogous statement holds
for chamber systems in general.

This situation has some uncomfortable consequences. For instance, we
cannot reduce a classification problem for a class of chamber systems to cases
with connected diagram, except when we have previously proved that the
Direct Sum Theorem holds for the chamber systems of that class. Or, if we
apply the celebrated criterion by Tits on rank 3 residues of spherical type to
see if a given chamber system C belonging to a Coxeter diagram is covered by
a building, we should check if the residues of C corresponding to disconnected
rank 3 subdiagrams split as direct sums of subsystems of rank 1 or 2.

Unfortunately, some of the authors who have written on chamber systems
seem to have been not awared of these problems. It would be stupid making a
list of those who occasionaly said something wrong because of this oversight.
I am not going to do that. Rather, I want to show that this situation is not
really so bad as it might look. To support my optimistic opinion, I will show
that in some important cases the counterexamples to the statement of the
Direct Sum Theorem are quite sporadic, so that things can be kept under
control in those cases. In particular, I want to say clearly that nothing wrong
is contained in the literature on transitive locally classical chamber systems,
apart from a few claims occasionaly made as "side-remarks” by some authors,
which can be dropped with no substantial consequences for the rest of what
those authors said.

This paper is organized as follows. In Section 2 we give a brief survey of
the general theory of chamber systems. Direct sums of chamber systems are
defined in Section 3. In Section 4 we describe the conterexamples that we
know to the statement of the Direct Sum Theorem for chamber systems. The
remaining sections are devoted to an investigation of transitive locally finite
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chamber systems belonging to Coxeter diagrams (sections 5 and 6). We will
not study the thin case in this paper, in spite of its undoubtable interest. The
reader may see [26] for it.

As chambers systems are families of equivalence relations satisfying certain
properties (see the next section), it will be useful to have stated some notation
for equivalence relations. Given a nonempty set C, we denote by € the
trivial equivalence relation on C, namely the largest equivalence relation on
C, having C as its unique equivalence class. The identity relation = will be
denoted by U. Given an equivalence relation & on C and an element ¢ € C, we
denote the equivalence class of & containing z by [z]®. Given two equivalence
relations & and ¥ on C, 8V ¥ is the least equivalence relation containing both
® and ¥, whereas & - ¥ is the relation defined by the following clause: given
any two elements z,y € C, (v,y) € & - ¥ iff &z and ¥y for some z € C.
We will often write @ for & - 9. If & C ¥, then ¥/® denotes the quotient
of ¥ by &, defined on C/® by the following clause: ([z]®,[y]®) € (¥/®) iff
z¥y.

We follow the notation of [9] for finite groups. We presume the reader is
familiar with the language of diagrams for geometries and we are not going
to repeat the definition of geometries here. The reader may consult [27] for
that. We only warn that we assume geometries to be residually connected
and firm by definition, as in [27)].

2 A Survey of Chamber Systems

2.1 Definitions

A chamber system over a finite set of types I is a pair C = (C,(®;)ics) where
C is a nonempty set, whose elements are called chambers, and (®;)ics is a
family of equivalence relations on C with the following properties:

(C1) Vir®i=4,
(C2) ®,N&; =U for any two distinct types ¢, j € I,
(C3) |[x]®:|> 2 for every type i € I and every chamber z € C.

This definition of chamber systems is a bit more restrictive than other ones
that can be found in the literature (compare [48], [29], [14]). However, it is
general enough to cover all interesting examples, or almost all of them.

Properties (C1) and (C3) are often called the connectedness property and
the firmness property, respectively. The positive integer n =|I| is called the
rank of C. The relation ®; is called the i-adjacency relation. Two chambers
are said to be adjacent if they are i-adjacent for some : € I.
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Weset &y = U and &; = V., ¢; for every nonempty subset J of I. Given
a chamber z and a subset J of I, the pair ([£]&;, J) is called a cell of type J (of
cotype I — J). We also write [z]® for ([z]®s, J) (thus identifying a cell with
its set of chambers) when this abbreviation does not cause any confusion. |J|
and n—|J| are respectively the rank and the corank of ([£]®,,J). Cells of
rank 1 are called panels. Trivially, if X is a cell of type J # @ and ¥ is the
restriction of &; to X, then Cx = (X, (2))jes) is a chamber system over the
set of types J and it is called a residue of C. The type and the rank of X are
the type and the rank of Cx.

A chamber system C is said to be tight if some of its cells of corank 1
contains all chambers. Note that no chamber system of rank 1 or 2 is tight
(by (C3) and (C2)).

A chamber system can also be viewed as a coloured graph: its edges are
the pairs of distinct adjacent chambers and an edge {z,y} gets the colour
¢ if # and y are i-adjacent (note that every edge has just one colour, by
(C2)). An automorphism of a chamber system C is just a colour-preserving
automorphism of the graph C. A chamber system C (a subgroup G of the
automorphism group Aut(C) of C) is said to be transitive if Aut(C) (respec-
tively, G) is transitive on the set of chambers of C. A morphtsm (in particular,
an isomorphism) of chamber systems over the same set of types is a colour-
preserving morphism (isomorphism) of graphs.

Given a transitive chamber system C, let G be a transitive subgroup of
Aut(C). Given a chamber ¢ € C, let B be stabilizer of ¢ in G and, for every
¢t € I, let P; be the stabilizer in G of the panel [c]®;. The following hold:

(P1) G ={(Pen

(P2) P;n P; = B for any two distinct typess,j € I;
(P3) B#P foralliel;

(P4) ngEG B =1

(P1) follows from (C1) and from the transitivity of G. (P2) and (P3) corre-
spond to (C2) and (C3) respectively. (P4) holds because G, being an auto-
morphism group of C, acts faithfully on the set of chambers of C.

B is called the Borel subgroup of G (relative to ¢) and, for every type: € I,
the subgroup P, is the (minimal) parabolic subgroup of G of type s (relative
to ¢). Given a proper nonempty subset J of I, the subgroup Py = (P;)jecs is
the stabilizer in G of the cell of type J containing c¢. We call it the parabolic
subgroup of G of type J relative to c. |J| is the rank of P;. We denote the
elementwise stabilizer of [¢]® s in Py by Ky and we call it the kernel of Pj.
Thus, P;/K; is the action of Py on [c]®;. Clearly, P;/K; is a transitive
automorphism group of the residue Ciejz, and (P1)-(P4) hold for the family
(Pj/K1)jes of subgroups of Py/Kj, with I and B replaced by J and B/K;
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respectively.

We denote (P;)er by P(G,C). Note that, if d is another chamber of
C, then Py(G,C) and P.(G, @) are conjugated in G. Thus, as far as we
are interested in P.(G,C) 'modulo conjugation’, we can write P(G,C) for
P:(G, G), dropping the subscript c.

Conversely, let B and P = (P, )ict be a subgroup of a group G and a family
of subgroups of G satisfying (P1)-(P4). Then we can construct a chamber
system C(P) as follows. Take the right cosets in G of B as chambers and for
every i € I define the ¢-adjacency relation ®; by the following clause: given
f,9 € G, fB and gB are i-adjacent iff g~' f € P;. The group G, acting on the
right cosets of B by left multiplication, is a transitive subgroup of Aut(C(P))
and we have P(G,C(P)) = P. On the other hand, if C is a transitive chamber
system and G is a transitive subgroup of Aut(C), then C(P(G,C)) = C.

2.2 Chamber Systems and Geometries

Given a chamber system C = (C,(®)iez), we can construct a graph I'(C) from
C taking the cells of C of corank 1 as vertices and declaring that two distinct
cells X, Y of corank 1 are adjacent in I'(C) precisely when X NY # 0. It is
clear that I'(C) is a connected n-partite graph (with n =|I{), the classes of
the n-partition being the sets of cells of C of corank 1 of the same cotype.
This graph is called the incidence graph of C.

In order to recover C from I'(C), we should be able to interpret the cells
of C as cliques of I'(C) (in particular, the chambers of C as maximal cliques
of I'(C)) in such a way that a cell is the intersection of all cells of C of corank
1 containing it and every clique of I'(C) is the set of cells of C of corank 1
containing some given cell of C. We can do that if and only if the following
hold (compare [14]):

(G1) @y =gy B1-y for every J C I
(G2) QJﬂ(Q]-{,-}-QI_{j}) = (QJnQI_{,-})-(QJ N&;_¢)}) for any two distinct
types ¢,7 € I and every subset J of I containing ¢ and j.

If (G1) and (G2) hold in C, then I'(C) is a geometry of rank n, in the meaning
of [27). In that case we say that C is geometric and its incidence graph I'(C)
is called the geometry of C.

Conversely, given a geometry I’ over a set of types I, it is well known
that the chambers (i.e. maximal flags) of I form a chamber system C(T'), two
chambers of ' being i-adjacent when they intersect in a flag of cotype ¢ (see
[27], Chapter 1). Clearly, C(T') is geometric and T(C(T')) 2 T'. On the other
hand, C(I’(C) = C for every geometric chamber system C.

It is not difficult to check that (G1) is equivalent to the following condition



PASINI: The direct sum problem for chamber systems 189

(considered by Meixner and Timmesfeld in [22]):
(Gl') ;N =% jngforal JKCI.

Note that (G1’) fails to hold in tight chamber systems. Thus, tight chamber
systems are non-geometric.

Trivially, all chamber systems of rank 2 are geometric. The geometries
of rank 2 we will most frequently consider in this paper are generalized m-
gons. We do not recall their definition here, presuming that the reader is
familiar with them. We only remark that the following relation characterizes
generalized digons: &%, = ®,®,. Thus, a pair P = (P, P,) of proper
subgroups of a given group G satisfying (P1)-(P4) defines a generalized digon
precisely when PP, = P,P, = G.

2.3 Diagrams, Orders and Local Properties

Since all chamber systems of rank 2 are geometric, diagrams can be definred
for chamber systems just as for geometries. We are not going to recall the
definition of diagrams here, assuming that the reader is familiar with them.
We only state a few conventions and fix some notation.

We denote the connected Coxeter diagrams of spherical type and rank
n > 3 by A,, Cu, Dy, Fy, Eg, Er, Es, Hs, H,, as usual. We denote the
diagram representing the class of generalized m-gons by I)(m), as in [48].
Thus, I(3) = A; and I,(4) = C;. We denote the diagram of rank 1 by A;.

We recall that a Coxeter diagram can also be viewed as a symmetric
matrix M = (m;;); je; where, for ¢ # j, m,; is an integer > 2 or the symbol
oo, whereas m; = 1 for all 1 € I. For i # j, the entry m,; is called the wesght
of the edge {1,5} of the Coxeter diagram represented by M.

A graph can be associated to every diagram D, by joining two distinct
types 1 and j when the class of rank 2 geometries associated in D to the
stroke {¢,j} is not the class of generalized digons. This graph will be called
the underlying graph of D. If C is a chamber system belonging to D, then
the underlying graph of D is called the diagram graph of C (in [6]: the basic
diagram of C). Thinking of underlying graphs, we can extend to diagrams
the terminology currently used for simple graphs: connected, disconnected,
connected components, string, tree, circuil, complete graph,... For instance,
we say that a diagram is triveal if its underlying graph has no edges.

If a diagram D splits into m connected components Dy, D,..., Dy, then
we write D = D; + D2 4+ ... + D,.. For instance, 4; + A, is a name for
the class of generalized digons (we recall that A, is the diagram of rank 1),
Ay + Ay + A, is the trivial diagram of rank 3
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and A; + I,(m) is the following disconnected Coxeter diagram

(m)
o
A chamber system C admits order ¢ at some type i if all panels of C of type 1
have size ¢ + 1. If C admits the same order ¢ at every type, then we say that
it has uniform order q. Following [7], we write orders below and types above
the nodes of a diagram, when possible.

A chamber system C is said to be thia if it admits uniform order 1. On
the other hand, if all panels of C have size > 3, then C is thick. A chamber
system is locally finste if all its cells of rank 2 are finite.

We recall that finite thick generalized m-gons exist only for m = 2, 3,4,6
or 8 (see [11]). A finite thick generalized m-gon with 2 < m is said to be
classical if it arises from the natural BN-pair of a Chevalley group of rank 2
(possibly of twisted type). Thus, finite classical generalized m-gons exist only
for m = 3,4,6 or 8. A locally finite thick chamber system C belonging to a
Coxeter diagram D is locally classical if, for every edge {1,j} of D of weight
m;; > 3, the residues of C of type {i,j} are classical generalized m;-gons.
Note that all locally classical chamber systems are locally finite and thick.

2.4 Covers and Quotients

According to [29] and [48] (see also [14]), given two chamber systems C and
C’' of rank n over the same set of types I and a morphism f : C — C’, we say
that f is an m-covering for some m = 1,2,...,n — 1 if, for every chamber z of
C and every J C I with |J|= m, f maps the cell X of C of type J containing
z onto the cell of C’ of type J containing f(z) and induces an isomorphism
from the residue Cy of X in C to the residue C} ) of f(X)in C'. H there is
an m-covering f : C — C', then C is called an m-cover of C' and C' is an
m-quotient of C.

Gi_ven chamber systems C and C of rank n over a same set of types I, we say
that C is the universal m-cover of C for some positive integer m < n if there is
an m-covering f : C — C such that, for every m-covering g : ¢’ — C, there
is just one m-covering h : C — C' with hf = g. An m-covering f : C—¢C
as above is said to be universal.

The existence problem for universal m-covers has been solved by Ronan
in [29] (see also Tits [48]):

Theorem 2.1 (Ronan) Fvery chamber system of rank n admits a universal
m-cover, for everym =1,2,...,n -1,
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It is clear that the universal m-cover of a chamber system is uniquely de-
termined up to isomorphisms. A chamber system is said to be m-ssimply
connected if it is its own universal m-cover (equivalently, if it is the universal

m-cover of some chamber system).

m-Coverings and universal m-covers are defined for geometries in the same
way as for chamber systems. However, there is no general analogue of Theo-
rem 2.1 for geometries. Thus, when we search for the universal m-cover of a
given geometry I', the only strategy we can follow in general is to study the
universal m-cover C of the chamber system C = C(T') of ' (which exists, by
Theorem 2.1) checking if it is geometric. If it is geometric, then its geometry
T'(C) is the universal m-cover of T.

Unfortunately, we do not know if the universal m-cover of every geometric
chamber system of rank n is geometric when 2 < m < n — 1 (even if no
counterexamples are known). When m = n — 1 things go better. Indeed:

Proposition 2.2 Every n — l-cover of a geometric chamber system of rank
n s geometrsc.

(See [25], Proposition 5; also [27], 12.5.1.) Thus, every geometry of rank
n admits an universal n — 1-cover. In particular, every geometry of rank 3
admits an universal 2-cover.

Buildings are perhaps the most important family of geometric chamber
systems belonging to Coxeter diagrams. The following celebrated theorem of
Tits [48] gives us a ”local” caracterization of those chamber systems belonging
to a Coxeter diagram that are 2-covered by buildings:

Theorem 2.3 (Tits) Let C be a chamber system belonging to a Cozeter di-
agram D over a set of types I and assume that, for every subset J of I of size
3 such that the diagram D induced by D on J is spherical, every residue of
C of type J s 2-covered by a building. Then the untversal 2-cover of C is a
buslding.

Therefore:
Corollary 2.4 All busldings of rank > 3 are 2-simply connected.
The following also holds in the finite thick case:

Theorem 2.5 Finite thick busldings with connected diagram of rank > 3 do
not admit any transstive proper 2-quotients.

Proof. Any 2-quotient of a building C is obtained as a quotient C/X of C by a
subgroup X of G = Aut(C) acting semi-regularly on the set of chambers of C
(see [29]). Furthermore, Aut(C/X) 2 Ng(X)/X and C/X is transitive if and
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only if Ng(X) is transitive on C (see [29]). On the other hand, if C is finite
and thick and belongs to a connected diagram of rank > 3, then the only
subgroup X of G semi-regular on the set of chambers of C and with Ng(X)
transitive on C is the trivial one (Seitz [31]). O

The connectedness of the diagram is essential in Theorem 2.5, as it will be
clear from the examples of Section 4. Note also that only transitive proper
quotients are forbidden by Theorem 2.5. Non-transitive proper quotients
exist. We only mention one of them, discovered by Timmesfeld [46]. Let
I' = PG(3,2). Its automorphism group G = L3(2) admits a subgroup X = Zs
acting semi-regularly on the set of chambers of I'. That subgroup defines a
2-quotient C(I')/X of the chamber system C(I') of I'. According to Theorem
2.5, that quotient is not transitive. Actually, Ng(X) = Do x 3, which is
not transitive on C(I'). Note that C(T')/X is not even geometric. Indeed all
geometries of type A,, D, and E¢ are buildings ([48], Proposition 6; [39],
Lemma 3.2; [4]). Furthermore, the following has been proved in [4]:

Theorem 2.6 (Brouwer-Cohen) Finite thick buildings of rank n > 3 do
not admit any geometric proper 2-quotients. '

3 Direct Sums and Reducibility

3.1 Truncations

Given a geometry I' over a set of types I and a proper nonempty subset J of
I, let V; be the set of elements of T of type j € J. The truncation of T' over
J (J-truncation of I', for short) is the geometry tr,(T') over the set of types J
induced by I on V;. If C = (C,(®;)ic1) is the chamber system of T, then the
chamber system of tr;(T") can be recovered from C as follows: the quotient
C[®;_y corresponds to the set of chambers of tr;(C) and, for every j € J, we
can take ®(;_ s} [ ®;_; as the j-adjacency relation. This construction can
be done in general for every chamber system C. It gives us a chamber sysiem
provided that both the following hold:

(T1) Q(;_J)U{j} N Q(;_ Nuky = ®;_; for any two distinct types 5,k € J;
(T2) for every j € J, the equivalence classes of ®(;_ sju(;1/®1- s have size at
least 2.

Clearly, both (T1) and (T2) hold if C is geometric. If (T1) and (T2) hold,
then the chamber system tr;(C) = (C/®;_s,(®u-nugjy/®1-1)jes) will be
called the truncation of C over J (also J-truncation of C, for short).
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3.2 Direct Sums

Given a geometry I over a set of types I and a partition of I in two nonempty
disjoint subsets J and K, we say that I' is the dsrect sum tr;(T') @ trg(T') of
its J- and K-truncations if all elements of T' of type j € J are incident with
all elements of T' of type k € K. More generally, I is the direct sum Iy, @ T,
of two disjoint geometries I';, I'; over the sets of types J and K respectively
if it is obtained by assembling I'; and I'; in the most trivial way, choosing
the trivial incidence relation to relate elements of I'; to elements of I';. If
I' =TI, with T, and T'; as above, then I'y = ¢r,(T') and I'; & trg(T) and,
for every flag F of T of type K (of type J), the geometry I'; (respectively,
I';) is isomorphic with the residue T'r of F.

Let C, Cy, C; be the chamber systems of I, T'; and I';, respectively. Thus,
C; and C, are the truncations of C over J and K, respectively. The relation
I' =T, &I, is characterized by the following properties in C (note that the
first one just says that all residues of type {7,k} with j € J and k € K are
generalized digons):

(R1) &;®: = %% forallje Jand k € K;
(R2) ®,N&x =U.

Therefore, the set C of chambers of C can be identified with the direct product
of the sets of chambers of C, and C,, representing ¢ € C as ([z]®k, [¢]®).
For every j € J, the j-adjacency relation ®; of C corresponds to the pair
of equivalence relations ((®xu(j})/®x, U2), where U; is the identity relation
on the set of chambers of C;. The k-adjacency relations with & € K can be
represented in a similar way. The fact that try(T') 2 ' for every flag F of T
of type K can now be rephrased as follows: we have tr;(C) = Cx, for every
cell X of C of type J.

Thus, direct sums of possibly non-geometric chamber systems can be de-
fined as follows. Let C; = (C1,(%¥,))es) and C; = (C2,(¥s)rex) be chamber
systems over mutually disjoint sets of types J and K. We define the direct sum
C=C®Cof C; and C; by taking I = JU K as set of types, C = C; x C;
as set of chambers and the pairs ('¥;,U;), (U1, ¥;) as adjacency relations
(j € J, k € K and U; is the identity relation on C;, § = 1,2). Trivially, (R1)
and (R2) hold in C for the partition {J, K} of I. (T1) and (T2) also hold,
try(C) = C, & Cyx for every cell X of C of type J and trg(C) & C, & Cy for
every cell Y of C of type K.

Clearly, C; @ C, is geometric if and only if both €; and C; are geometric.
If this is the case, then I'(C, @ C;) = T(C1) @ T'(Ca).

Conversely, let C be a chamber system over a set of types I and let {J, K'}
be a partition of I in two disjoint nonempty subsets. Assume that (R1) and
(R2) hold in C for the partition {J, K}. Then (T1) and (T2) also hold ([25],
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Proposition 3). Thus we can consider the truncations of C over J and K. By
(R1) and (R2), we have C = tr;(C) @ trg(C).

We have only considered direct sums of two geometries or chamber systems
here. Needless to say, all the above can be rephrased for direct sums with
more than two summands.

3.3 Reducibility

A chamber system is said to be reducsble if it splits as a direct sum of some
of its truncations. Otherwise, it is said to be irreducible. Clearly, every
reducible chamber system C splits as the direct sum of a finite number of ir-
reducible chamber systems and that splitting is unique, modulo permutations
of the summands. The summands of that splitting are called the srreducible
components of C (of T').

We have shown in the previous subsection that a chamber systems C over
a set of types I = J U K, with {J, K} a partition of I, splits as the direct
sum of chamber systems over the sets of types J and K if and only if both
(R1) and (R2) hold in C with respect to J and K. Thus we call (R1) and
(R2) the reductbslity conditions.

The first reducibility condition (R1) just states that the sets of types J
and K are not joined by any path in the diagram graph of C. The sec-
ond reducibility condition (R2) is a special case of (G1’) of Subsection 2.2,
which holds in every geometric chamber system. Furthermore, every geomet-
ric chamber system admits truncations over every nonempty set of types and
its truncations are geometric. Therefore:

Theorem 3.1 (Direct Sum Theorem) The srreducsble components of a
geometric chamber system C are the truncations of C over the connected com-
ponents of the diagram graph of C.

In particular:

Corollary 3.2 A geometric chamber system is srreductble if and only if its
diagram graph is connected.

Unfortunately, the statement of Theorem 3.1 fails to hold for non-geometric
chamber systems. We will give a number of conterexamples in Section 4, but
the reason of that failure can be explained right now. The first reducibility
condition (R1) is the only information we can get from the disconnectedness
of a diagram, but (R1) is not sufficient to obtain splittings in direct sums:
we also need (R2) for that. However, (R2) does not hold in non-geometric
chamber systems, in general.
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We say that a chamber sytem C with disconnected diagram graph D is
completely reductble if C admits truncations over every connected component
of D and these truncations are the irreducible components of C.

Given a chamber system C of rank » > 3 and a triple J of types such that
the graph induced on J by the diagram graph of C is disconnected, we say
that C is reducible over J if all residues of C of type J are reducible (hence
completely reducible, since {J}= 3 and since reducible chamber systems of
rank 2 are generalized digons). We say that C is locally reducible if it is
reducible over every triple of types J as above.

Note that all reducible chamber systems of rank 3 are geometric and all ge-
ometries belonging to disconnected Coxeter diagrams of rank 3 are buildings.
Thus, by Theorem 2.3 we obtain the following

Proposition 3.3 Let C be a locally reducible chamber system belonging to a
Cozeter diagram. Then the universal 2-cover of C is a building if and only if
all residues of C of type Az, C3 and Hy are 2-quotients of buildings.

3.4 Covers of Direct Sums

Let C be a chamber system of rank n over a set of types I, let {I}, 15, ..., I,}
be a partition of I such that C admits truncation over each of Iy, I,..., I,
and let C = @!_, C;, where C, is the I;-truncation of C (¢ = 1,2,...,r). Given
an integer m = 2,3,..,n — 1, if m <[, then C; will denote the universal
m-cover of C;. If m >|I;|, then we set ; = C;. Let € be the universal m-cover
of C. Then the following holds ([25], Proposition 6; also [27], 12.5.2):

Proposition 3.4 C =@/, C;
The next corollaries easily follow from this proposition:

Corollary 3.5 Let C = @!_,Ci and assume that, for everyt = 1,2,...,r,
either C; is m-simply connected or it has rank < m. Then C is m-simply
connected.

Corollary 3.8 Every direct sum of chamber systems of rank 1 or 2 is 2-
simply connected.

Corollary 3.7 Let C be a geometric chamber system of rank n with discon-
nected diagram graph D and let m = 2,3,... or n — 1. Then the universal
m-cover of C is the direct sum of the unsversal m-covers of the truncations of
C over the connected components of D (with the convention that a chamber
system of rank < m should be regarded as its own universal m-cover).

Note that Proposition 3.4 only states that, if a chamber system C is re-
ducible, then its universal m-cover is also reducible. It does not say that, if
C is reducible, then every m-cover of C is reducible (but I do not know any
counterexamples).
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4 Counterexamples

4.1 Ronan Systems

Given a family P = (P;)%, of n > 3 proper subgroups of a group G, let
B =N, F;. Assume that P satisfies (P2)-(P4) >f Subsection 2.1 and the
following condition, stronger than (P1):

P1* P;, P;) = G for any two distinct indices ¢,7 = 1,2, ..., n.
]

By (P1*), the chamber system C(P) defined by P is tight (hence it is not
geometric). We call P a Ronan system, after Ronan [30], who used a system
like that (actually, three copies of Z3 in G = Frob(21)) to produce a tight
chamber system of type A, (see also [15]), Example 3.3(1)). We will use Ronan
systems to construct irreducible transitive chamber systems with disconnected
diagrams.

4.2 Examples from Frobenius Groups

Let G be a Frobenius group and let F be its Frobenius kernel. Take P, = F
and choose Py, Ps,..., P, among the complements of F in G. Then P = (P},
is a Ronan system, with B = 1. The diagram of C(P) is disconnected. Indeed
the type 1 is not joined to any other type in that diagram. However, C(P) is
irreducible.

For instance, if G = Frob(9.73), Frob(21) or S3(= Frob(6)) and n = 3,
then C(P) belongs to the Coxeter diagram A; + A, and has orders (72, 8, 8),
(6,2,2) or (2,1,1) respectively:

1 2 3
° S
72 3 3
1 2 3
° —
6 2 2
1 2 3
. P
2 1 1

G stabilizes the (unique) residue of type {2,3} and acts faithfully on it. If
G = Frob(9.73) or Frob(21), then C{P) is locally classical.
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4.3 Examples with G = X%:B

Let A be a split extension A = X:B of a group X by a group B, let Y =
X1 x X3 be the direct product of two copies X, Xo of X and let G =Y:B
be the split extension of Y by B, with B acting on X; and X; as on X. let
F be a finite family of isomorphisms from X;:B to X;:B such that f(3) =%
for all f € F and all b € B and f(x) # g(z) for every choice of distinct
members f,g € F and all z € X; — {1}. Set P, = X;:B for : = 1,2 and, for
every f € F, define Py = {(«, f(¢))b| ¢ € X1,b € B}. We obtain a Ronan
system P of rank n (= 2+{F|). The diagram of C(P) is trivial, but C(P) is
irreducible.

Needless to say, we might also take B =1 and G =Y in the above.

Examples of rank 3 can be obtained from any split extension A = X:B by
taking any isomorphism f from X;:B to X,:B and F = {f}. For instance,
let X = Z3, B=2,and A = S3 = X:B. Then G = 3%2 is a subgroup of
the alternating group As. We can find an involution ¢ € S¢— Ag normalizing
G and B and interchanging X, with X,. We set F = {f}, with f the outer
automorphism of G induced by ¢ and P = (P, P2, P;) with P, = X;:B
(:=1,2) and P3 = {(z, f(z))b| = € X1,b € B}. The diagram of C(P) is the
trivial diagram A; + A; + Ay, with uniform order 2:

o o o

2 2 2
However, C(P) is irreducible. We call C(P) the 3%:2-chamber system.

Remark. Every chamber system can be viewed as a partial plane with a
parallelism relation. The points are the chambers, the lines are the panels
(two lines meet in at most one point by (C2)) and two lines are parallel when
they are panels of the same adjacency relation. Thus, every net of degree
n > 3 is an irreducible chamber system with trivial diagram. The examples
described in this subsection are indeed of this kind.

4.4 Covers of the Previous Examples

Let P be as in the previous subsections. We will show that the universal
2-cover of C(P) is reducible.

In the examples of Subsection 4.2 we have B = 1 and at least one of
the minimal parabolics, say Pi, is normal in G. Thus, we can construct a
sultable split extension G = N:G w1th N 2 P, and we can choose a fam1ly

= (P, of subgroups owa1th Pi=Nand B, =P, <Gfori=23,.

The homomorphism f : G — G mapping (z,y) onto sy (£ € N, y E G)
induces a 2-covering from C(P) to C(P). The reducibility condition (R2)
holds in C(P) for the partition {{1},{2,...,n}} of the set of types {1,2,...,n}.
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Hence the lack of connections from the node 1 to the rest of the diagram now
corresponds to a splitting of C(P) as the direct sum of its truncations over the
sets of types {1} and {2,...,n—1}. Iterating this construction if necessary, we
eventually reach a 2-cover of C(P) which splits as a direct sum of irreducible
components corresponding to the connected components of the diagram of
C(P). Therefore the universal 2-cover of C(P) is reducible, by Proposition
3.4.

Turning to the examples of 4.3, let us set [ = {1, 2}UF and X; = P.NY for
i € I. Let G = Y:B be the split extension of the direct product ¥ = ILic: X:
by B, with B 3 acting on X; as in F;. Clearly, Y and G can be viewed as
subgroups of ¥ and G respectively. For every i € I, the subgroup P, of G can
be identified with its copy Xi:B in G. Hence (P1)-(P4) hold in the family

(P.).E,- of subgroups of G. Clearly, the chamber system C('P) defined
by P is the direct sum of n =|I| geometries of rank 1. Hence it is 2-simply
connected, by Corollary 3.6.

It is not difficult to prove that there is some subgroup K of ¥ isomorphic
to a product of n — 2 c0p1es of X and such that K N(X; x X;) =1 for every
choice of distinct types i,j € I. Clearly B normalizes all subgroups of Y.
Hence K < G. It is easily seen that G 2 G/K. Thus, we can identify G with
G/K. The canonical projection 7 : G — G/K = G induces the identity on
P; for every 1+ € I and does not identify any two of these subgroups. Therefore
7 induces a 2-covering fr : C(P) — C(P), which is universal because C(P)
is 2-simply connected.

Remark. Some examples of 2-simply connected irreducible chamber systems
with disconnected diagram have been constructed by Tits ([48}, 6.1.6(b)), by
some kind of ’free construction’. Those examples are neither transitive nor
finite.

4.5 Some Non-Tight Examples

The previous examples of irreducible chamber systems with disconnected di-
agram are tight. However, non-tight irreducible chamber systems with dis-
connected diagram are easy to construct.

Let P = (P.)icr be a family of subgroups of a group G satisfying (P1)-
(P4) of Subsection 2.1. Given a family (H;)i¢s of non-trivial groups, let us set
G = G x [l;c; Hi and P, = P, x H;. Then B, can be wieved as a subgroup of
G and (P1)-(P4) hold in P = (B )ics. The chamber system C('P) is non-tight
and it has the same diagram graph as C(P). Note that C(P) is geometric if
and only if C(P) is geometric. Let the diagram graph of C(P) (hence of C(P))
be disconnected. Then C(C) is reducible if and only if C(P) is reducible.

Let C(P) be tight, irreducible but with a disconnected diagram (as in the
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examples of the previous subsections). Then C(P) is irreducible with the
same (disconnected) diagram graph as C, but it is not tight.

4.6 The 3?:2-Chamber System, the Wester Chamber
System and the A;-Geometry

The 3?:2-chamber system (defined in Subsection 4.3) appears as a rank 3
residue in the following chamber system, discovered by Wester [52].

Let S be a set of seven objects and let G be the alternating group Ay, in
its natural action on S. Let II* be a model of the projective plane PG(2,2)
built on the seven points of S. Given a € S, let m = {a,b,c} be a line of
II* on a. The transposition (b,¢) € Sy does not preserve II*, but it maps
IT* onto another model II™ of PG(2, 2) for which m is still a line. Let Py
be the stabilizer of IIt and II~ in G. It is not difficult to check that P, also
stabilizes a. We denote the stabilizers in G of m and II*+ and of m and IT~
by P, and P_, respectively. The stabilizer of ¢ and m in G will be denoted
by P,. The quadruple P = (P,, P_, Py, P,) satisfies (P1)-(P4), with B = Dj.
The chamber system C(P) belongs to the Coxeter diagram of affine type Bj,
with uniform order 2:

+5\0 1

L ——————

—e 2 2
2

P; = G = Ay for every triple J of types other than {+,—,1} and P, _ ) =
22'(3222), with kernel Ky -3 = 27 and P{_‘_,_,l}/K{_‘_'_'l} = 3%2.

C(P) has 35 residues of type {+,~,1}, but just one residue of each of
the types {+,0,1}, {—,0,1} and {+,0,—}. Hence it is tight. The residues
of type {4, —,1} are isomorphic to the 3%:2-chamber system. The residue
of type {+,0,—} is isomorphic with the chamber system of PG(3,2) and
P(40,-3 = A7 acts faithfully on it. The residues of type {+,0,1} and {—,0,1}
belong to the Coxeter diagram C;. They are models of the so-called Az-
geometry.

We call C(P) the Wester chamber system, after its discoverer. The Wester
chamber system also appears as a rank 4 residue in two chamber systems of
rank 6 for the groups Og (3) and Us(5) (see [52] and [23]; also [19], pages 54
and 55).
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5 Coxeter Diagrams of Rank 3

5.1 Some Reducibility Theorems

In this subsection C = (C,(&;, ®;, ®3)) is a transitive thick locally finite
chamber system of rank 3 belonging to the disconnected Coxeter diagram
A1 + I2(m)

1 2 (m) 3

® *———=0
where 1, 2, 3 are the types. In particular, when m = 2,3 or 4 we have the
following diagrams:

° ° ° (m=2)
° P (m =3)
o —e (m=4)

Note that m = 2,3,4,6 or 8 by [11], since we have assumed that C is locally
finite and thick. The residues of type {1} and {2,3} containing a given
chamber ¢ of C will be denoted by C; and C,; respectively. P;, P,, P; and
B are the minimal parabolic subgroups and the Borel subgroup of Aut(C)
relative to c. According to the notation of 2.1, P, 3 = (P;, P3) is the stabilizer
of C;5 and K3 is its kernel.

Theorem 8.1 Letm = 3. Then C is reducible, except possibly if P53/ K, 3 s
a Frobenius group of order (¢ + 1)(¢* + ¢ + 1), sharply flag-transitive on the
projective plane Cy3 (of order q), and (P, N Py3)/ K33 = Zg24q41-

Proof. Set X = PN P,3. Let C be irreducible. Then X properly contains
B (compare (R2) of Subsection 3.1). By a theorem of Kantor [16] one of the
following holds:

(1) g is a prime power, Cy3 = PG(2,¢q) and P,3/K,5 > L3(q);

(i) ¢*+q+1is prime, ¢ is even and P, 3/ K, is a Frobenius group of order
(g + 1)(¢* + ¢ + 1), acting sharply flag-transitively on the projective plane
02,3.

Let (i) hold. Then X/K,3 > (P:;/K23) N La(g) for some i = 2 or 3. However,
this contradicts (P2) of 2.1 (indeed X < Py).

Thus (ii) only survives. We still must prove that (P, N P3)/Ka3 =
Zg24q41- Either X/ K, ; is a non-trivial subgroup of some complement of the
Frobenius kernel F of the Frobenius group P,3/Ka 3, or X/K,3 = F. How-
ever, (X/K,33)(Pi[K23) = (Pi/K3)(X[Ky3) for i = 2,3, because P\P; =
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PP, for 1 = 2,3. On the other hand, this condition does not hold if X/K; 3
is contained in some complement of F. Therefore X/K,3 = F. O

Theorem 8.2 Let m > 3 and let C be locally classical. Then C s reducible,
ezcept possibly when m = 3 and Py3/Kas = Frob((q + 1)(¢> + g + 1)), with
q=2 or8.

Proof. When m = 3 the statement follows from Theorem 5.1 and from a well
known theorem of Higman and McLaughlin [13]. Let m > 3 and let C be
irreducible, if possible. As in the proof of Theorem 5.1, X = P, N P23 > B.
Furthermore, one of the following holds, by a well known theorem of Seitz
[31] (see also [14], Theorem C.7.1):

(1) P,3/K23 contains the Chavalley group naturally associated to the gen-
eralized m-gon Cy3;

(2) Co3=Q4(2)and Py3/Kss = As = Su(2)';

(3) C23 = Q4(3) and Py3/K,3 = 2*:S5 or 2% A5 or 2*:Frol(20);

(4) Cg,a = Q;(?)) and P2,3/K2,3 = L3(4).2 or L3(4).22;

(5) Ca3 is the generalized hexagon for G2(2) and P;3/K,3 = G3(2);

(6) Cy5 is the generalized octagon for 2Fy(2) and P; 3/ K, 5 =*Fy(2)'.

In case (1) a contradiction is obtained as in (1) of the proof of Theorem 5.1.
Let (2) occur. Then B/K,3 is the Sylow 2-subgroup of Ag¢ and X/K,3 is
contained in the stabilizer of a point or a line of C33, as X > Band X # Py
by (P2) of 2.1. However, XP; = P,X and X NP, = B for t = 2,3. It is not
difficult to check that no subgroup X of P;3 = K33.A6 can have all the above
properties.

Assume we are in case (3) with Py3/K,3 = V:As, V = Vect(4,2). Then
B/R’z’:; = Zg X Z3 and P,'/Kg'a = 3.D3, Pj/Kg';; = (8)5A4, with e a non-
zero vector of V, (4,5) = (2,3) or (3,2). Clearly, ¢ € X/K, 3, since ¢ is the
involution of Bf{K,3. If X/K,3 contains an element g of order 5, then it
contains all of V, since g displaces ¢ and X/K,3 also contains an element
of order 3 fixing e, inherited from B/Kz3. This forces X = P,3, which
contradicts (P2) of 2.1. Therefore |X/K> 3| divides 263. We have X NP, = B
by (P2) and XP; = P,X (i = 2,3). Therefore 2° does not divide |X/K> 3|
Hence |X|= 2"3 for some h = 2,3 or 4. It is now easy to check that no
subgroup X of P,3 can have all those properties.

The case of P3/K,3 = 2*:55 can be ruled out in the same way. Let
Py3/Kp3 = 24:Frob(20). We now have BJK,3 = Z;, P;[K;3 = Dy and
Pij[Ka3 = Z3 x Z4 for (3,7) = (2,8) or (3,2)). An analysis as above shows
that | X /K, 3|= 10. Thisimplies X/K;3 = B.5 = 2x5. However, no subgroup
like this esists in 2*: F'rob(20).

Let us consider (4) with Py3/Kz3 = L3(4).2. We have B/K,3 = 3%2,
Pi[/K,3 =3%Qs.2and P/ K; = Ag, for (s,7) = (2,3) or (3,2). The subgroup
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P;[K;3 is maximal in Py3/K33, t = 2,8. Therefore XP, = PX = P3,
s = 2,3. Since X N P, = B by (P2), |X|.|P:|={P23|.|B] for ¢ = 2,3. Therefore
|Pi|=1P;| (3,j = 2,3), which is false. The case of P;3/K>3 = L3(4).2? can be
ruled out in a similar way.

An argument similar to the above can also be used to rule out (6). Finally,
assume we are in case (5). For (3,7) = (2,3) or (3,2), we have P;/K;3 = 4.5
and P; = 42:5;. These are maximal subgroups of Py3/K3 3 of index 63. Since
XP,=PX and X N P; = Bfori = 2,3, |Pa;3|.|B|= 3. However, G3(2) does
not admit any subgroup of index 3.

Thus, each of the cases (1)-(6) leads to a contradiction. O

Examples for the irreducible cases of theorems 5.1 and 5.2 have been given in
Subsection 4.2, with ¢ = 2 and 8. Let ¢ be the order of a projective plane as
in the irreducible case of Theorem 5.1, with ¢ # 2,8. A theorem of Feit [10]
gives us more information on this case: 3 divides ¢ + 1, 8 divides ¢, but ¢ is
not a power of 2. Furthermore ¢ > 14, 000, 000.

In the next theorem we assume that the parabolic subgroups of Aut(C)
satisfy the following for some prime p > 1:

(1) P; is finite for all 1,5 = 1,2,3 and B is the normalizer in P;; of a Sylow
p-subgroup of P;;.

(2) For every i = 1,2,3, OF(P;/O,(P)) is either a perfect central extension
of a rank 1 Chevalley group in characteristic p (possibly of twisted type) or
the dihedral group Djo (of index 2 in §2(2) = Froi(20); p = 2 in this case).
(3) for i = 2, 3, OF(Py;/Op(P1;)) is either a direct product X; x X; with
Xy = (Py N OY(P1;))/Oy( Pry) for k = 1,1, or the subgroup 3%:2 of the
alternating group As, obtained by intersecting A with the stabilizer in Sg of
two disjoint triples of objects (p = 2 in this case). The same condition holds
for OF (P, 3/Oy( Py3)) when m = 2.

(4) f m > 2, then OF (Py3/0,(P,3)) is either a perfect central extension of
a rank 2 Chevalley group in characteristic p, possibly of twisted type, or one
of Sy(2), Ga(2) or 2Fy(2)' (p = 2 if any of these three cases occurs).

(We have mentioned perfect central extensions in (2) and (4); we recall that
a central extension X = Z.Y is said to be perfect if Z < X'.) The next
theorem generalizes a result implicit in Corollary 5.9 of [39]:

Theorem 5.3 Let (1) — (4) hold for some prime p > 1. Then esther C 1s
reducible or m = 2, p = 2 and C is the 3%:2-chamber system (defined in
Subsection 4.3).

Proof. Let C be irreducible. Then m = 2 by Theorem 5.2. We can assume
without loss that P, = OF(P,)B, for all i = 1,2,3 (see [39], (4.5)). Let
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O"(Pg,3/OP(P2,3)) be a direct product X3 x X3 as in (3), if possible. Then
O”'(P2,3)B = P, P;, the subgroups P2, P; normalize each other and

(BN O¥ (P23)) [0y Pa3) = Yz X Y3 = (OF (Py) N O (P3))[Op( Pa3)

for suitable subgroups Y, Y3 of X, and Xj (recall that O,( P;3) < B, by (1)).
As C is irreducible, P, N P, P; properly contains B. Hence there are elements
z € A3, y € A; such that zy € (A N O"(Pglg))/O,(P2,3)) — ("1 xY2). As
sy @ Yo x Y; either s € Y, or y ¢ Y3. We can assume without loss that
z € Y;. Let P be the unique Sylow p-subgroup of B (see (1)). B N OF(Py3)
is the normalizer of P in OF (P, 3). Let = normalize Y5, if possible. Then, as
 also centralizes Y3, every representative ' of x in O” (P,3) normalizes the
normalizer B N OF (P, 3) of P in OF (P,3), hence it belongs to B N OF(Py3),
contrary to the choice of £ € X; — Y>. Therefore x does not normalize Y>.
That is, there is an element z € Y, such that zzz~-1z~! ¢ Y,. Therefore, and
since z centralizes y:

Z:l:yzy—l:l:_l = za:yz‘ly’l:c’l € (P1 n OP’(Pz,s))/Op(Pz,s) n (Xg - Yg).

This implies that P,N P; properly contains B, contrary to (P2). Hence, for ev-
ery choice of distinct types i, = 1,2, 3, none of the groups O (P, ;/ Op( P, ))
is a direct product. Therefore all of them are isomorphic to the subgroup
3% :2 = (83 x S3) N Ag of Ag, we have p = 2 and OF (P,/O,(P;)) = S; for
$1=1,23.

Since C is irreducible, P, N P,; properly contains B. Hence there is an
element z of (P, N 0% (P,3))/0x(P23)) —(S/Ox( Py3)) of order 3 or 6, with §
the Sylow 2-subgroup of P;3. We can generate all of P, by a representative
of z and by S. Therefore Py < Pp3. By (P4), Oz(P;3) = 1. It is now clear
that C is the 3%:2-chamber system. D

Properties like (1)-(4) are considered by Timmesfeld in [39] to define parabolic
systems. However, Timmesfeld assumed non-tightness in his definition of
parabolic systems. In Corollary 4.9 of [39], Timmesfeld considered a parabolic
system P of arbitrary rank in a group G. He also assumed that, for every con-
nected component J of the diagram D of C(P), O (P;/O,(Pr)) is a perfect
central extension X = Z.Y of a simple Chevalley group Y in characteristic
p by a p-group Z. Then he could prove that G splits as the central product
of its parabolic subgroups corresponding to the connected components of D.
Needless to say, that result does not apply to the 32:2-chamber system. In-
deed the 32:2-chamber system is tight, whence its parabolics do not form a
parabolic system in the meaning of [39]. Furthermore, O (P./O,(P:)) = Ss
for each minimal parabolic P; of the 32:2-chamber system, contrary to the
hypotheses of Corollary 5.9 of [39].
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Since the 3%:2-chamber system is tight, every transitive chamber system
having it as a rank 3 residue is tight. Note also that, if C is as in Theorem
5.1 or 5.2, then P; < Py P;. This inclusion forces C to be tight. Thus:

Corollary 5.4 LetC be as wn theorems 5.1, 5.2 or 5.3, but let C be non-tight.
Then C is reductble.

Problem. The 3%:2-chamber system has a reducible universal 2-cover (see
Subsection 4.4). Can we prove the same for any of the irreducible chamber
system allowed by Theorem 5.1 ?

5.2 On Geometric Chamber Systems of Rank 3

We will draw some consequences from the previous theorems in Section 6.
For the rest of this section we discuss some conditions sufficent for a chamber
systems of rank 3 to be geometric. We will need them later.

Meixner and Timmesfeld [22] have proved that, if the diagram graph of
a chamber system C is a string, then C i1s geometric if and only if it satifies
(GY’). The following is a consequence of that theorem:

Lemma 5.5 Let C = (C,(®1, 83, $3)) be a chamber system of rank 3 with
Q1Q3 = §3Q1, Ql’g N Q,',;; = Q,‘ fOT‘i = 1,2 and Q,'Qg # QQQ,- fOT‘i = 1,3.
Then C &s geometric.

(See [25], Corollary 13.) Henceforth we assume that C is a transitive chamber
system admitting finite orders s, s, ¢t with s > 1 and belonging to the diagram
A3 or C3

2 3

(A3) — o o
] [] s

1 2 3

(03) * "
[] 8 t

(1, 2, 3 are the types.)

Theorem 5.6 Let C be as above. Then C is one of the following:

(1) a 3-dimensional projective geometry;

(i) a rank 3 polar space;

(1is) the Ar-geometry ( see Subsection 4.6);

(iv) an (unknown) geometric chamber system of type C; with s even, t odd,
14108 < s < t and Py o/ K12 = Frob((s + 1)(s2 + s + 1));

(v) an (unknown) non-geometric chamber system of type Cs with 25 < t <
82— s and 1+ 5 + 8% dividing (1 + t)(t — s = 1).
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Proof. Let C be non-geometric. By Lemma 5.5, P;; N P;5 > P;, with (1,5) =
(1,2) or (2,1). By [16], one of the following holds:

(a) s is a prime power, C12 = PG(2,s) and Py2/K12 > L3(s);
(b) siseven, 1+ s+ s?is prime and P2/ K12 = Frob{(1 + s)(1 + s + %))
acting sharply flag-transitively on the projective plane Cy 5.

In both cases P, is maximal in P, 5, for h = 1,2. Hence P;; N P;3 = Py,,
since P,j N P,3 > P, (1 =1 or 2). Therefore Py3 < P, 3. Since P; < P;3 with
{1,7} =1{1,2}, P, < P.5. Whence P;3 < F.3 and:

(*)  1Pial/\1Psl= (I1Psl/ | B 3)-(1P; 31/ 1Psl).

However, |P, 3|/|Ps|= 143 and |P, 3|/|Ps|= 1435+ or (14+3)(1+st) according
to whether m = 3 or 4. Substituting in (%), we see that a contradiction is
avoided only if (s, 7) = (2, 1) and m = 4. In this case we obtain P, 3 < P23 and
'P2’3'/'P1’3I= 1+ st However, 'P2,3'/'P2'= (IP2,3I/'P1,2')'('Pl,2'/'P2I)' Hence
1+ s + s? divides (1 + t)(1 + st). By standard manipulations, we obtain that
1 4 s + 52 also divides 1 + ¢3. Therefore 1 + s + 82 divides d(1 + t), with
d=gecd(1—t+t31+st,1+s+s?). It is not difficult to see that d divides
s + 1 —t. Therefore 1 + s + 82 divides (1 + t)(t — 8 — 1) and it is easily seen
that this forces s> # ¢t > 5, and t < 8% — 5 (see [28]). Thus, C is as in (v).

Let C be geometric. If its diagram is Aj;, then C is a projective geometry
by Proposition 6 of [48]. If the diagram is C; and C is neither a polar space
nor the As-geometry, then (iv) holds (see [53]). D

Note that none of the known finite thick generalized quadrangles admits or-
ders s, t satisfying relations as in (iv) or (v) of the previous theorem. In
particular, C cannot be locally classical in those cases. Therefore:

Corollary 5.7 Let C be locally classical. Then C s one of the following:

(i) & 3-dimensional projective geometry;
(4s) a rank 3 polar space;
(#) the A;-geometry.

The previous statement had been obtained by Aschbacher [2] for geometries
in the early eighties. A short time later, Timmesfeld [41] generalized As-
chbacher’s theorem to chamber systems.

6 Coxeter Diagrams of Rank > 3

Throughout this section C is a transitive locally finite thick chamber system
belonging to a Coxeter diagram D of rank n > 3 with set of types I and G
is a transitive subgroup of Aut(C). As in Subsection 2.1, P(G,C) = (Pi)ics is
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the system of parabolic subgrpups of G defined by a chamber ¢ of C and B
is the stabilizer of ¢. Given a subset J of I, C; is the residue of C of type J
containing ¢, Py = {P;);ey is the stabilizer of C; in G and K is the kernel of
Py on C;. The diagram induced by D on J will be denoted by D;.

6.1 Some Lemmas

Lemma 6.1 Let C be locally classical, let D be connected and B finite. Let
J be a triple of types such that D ss disconnected but Cy is irreductble. Then
D is trivial and one of the following holds:

(1) Cj is the 32:2-chamber system (see Subsection 4.3);

() D is a bipartite graph with all edges of weight 4; furthermore, for any
two types 1,7 joined in D, the residues of type {i,j} are tsomorphic with
the S¢(3) generalized quadrangle or its dual and P;;[K;; = 2*:As, 2*:S5 or
24 :Fro(20);

(11} D is a star with all edges of weight 4

(0 is a type)

and, for every s € I — {0}, the restdue Co; 13 isomorphic with the Uy(3)
generalized quadrangle; Po;[Ko; = L3(4).2 or L3(4).2%.

Proof. This lemma is an easy consequence of the classification of transitive
locally classical chamber systems with connected diagram and finite Borel
subgroup, accomplished by Timmesfeld, Stroth and Meixner in a series of
papers (Timmesfeld [39], [40], [41), [42], [43], [44], [45], Stroth [32], [33], [34],
[35], [36], [37], [38], Meixner [18], [19], [20], [21]). In some of those papers
some additional hypotheses were made. For instance, Stroth restricted his
interest to non-tight chamber systems (sometimes, even to geometric chamber
systems). Anyhow, a complete account of that classification, free from any
additional hypotheses, is given by Meixner in [19]. We refer to that paper.

Let us prove Lemma 6.1. Let €, G and J be as in the hypotheses of
that lemma. It follows from [19] that (1)-(4) of Subsection 5.1 hold in
P(Ps/Ky,Cy) except when (ii) or (iii) occurs. If (1)-(4) of 5.1 hold, then
(1) holds by Theorem 5.3. In this case Dy is trivial. Clearly, D is trivial also
if (iii) holds. If (ii) holds, then Dy is trivial by Theorem 5.2. D

Let C, D and B be as in Lemma 6.1. Assume furthermore that C is non-tight
and that it is not as in (ii) or (iii) of Lemma 6.1. Then C is locally reducible
(indeed C is tight if (i) of Lemma 6.1 holds for some triple J of types, because
the 32:2-chamber system is tight). Thus, the non-tightness assumption made
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by Stroth in many of his papers on the case of characteristic 2 is a way to
keep off non locally reducible examples.

Corollary 8.2 Let C be locally classical, let D be connected and let B be
finite. Assume furthermore that none of the rank 3 residues of C is isomorphic
with the Aj-geometry. Then the universal 2-cover of C is o buslding, except
possibly when C is as in (i) or (i11) of Lemma 6.1.

Proof. Easy, by Corollary 5.7, Lemma 6.1 and Proposition 3.3, and because
the universal 2-cover of the 32:2-chamber system is reducible (see 4.4). D

Lemma 6.3 (Aschbacher) Let C be locally classical and locally reducible
and let D be a string of length n > 4. Then the none of the residues of C of
rank 3 is isomorphic to the Ar-geometry.

This is Theorem 2 of [2]. Actually, Achbacher stated that theorem only for
geometries. However, the local reducibility is the only property of geometries
he exploited in his proof.

Corollary 8.4 LetC and D be as in the hypotheses of Lemma 6.3. Then the
untversal 2-cover of C 15 a building.

Easy, by Lemma 6.3, Corollary 5.7 and Proposition 3.3.

Problem. I do not know if (ii) and (iii) of Lemma 6.1 are really exceptions
for the statement of Theorem 6.2. The information available from [19] and
{20] on those cases should be worked out in order to obtain some conclusions
on the structure of P; when Dy is trivial. Ido not claim that this is extremely
difficult to do. Nevertheless, it does not seem to be a trivial exercise.

6.2 Connected Spherical Diagrams

Theorem 6.6 Let D be connected, of spherical type and rank n > 4. Then
C is either a buslding or an (unknown) non-geometric chamber system of type
Cyn with C3 residues as in (v) of Theorem 5.6.

Proof. By Theorem 5.6, the residues of C of type Aj are projective geometries
and those of type Cj are polar spaces or the A;-geometry or non-geometric
as in (v) of Theorem 5.6 (note that (iv) of Theorem 5.6 cannot occur for Cs
residues of transitive geometric chamber systems of type C, with n > 4; see
[17)).

Assume that C is of type C, with C; residues as in (v) of Theorem 5.6.
Then D = C, or Fy. Let D = Fy, if possible. Only one of the two Cz-residues
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of C containg a given chamber can be as in (v) of Theorem 5.6. Therefore
the other Cj-residue is either a polar space or the A;-geometry. This forces
C;-residues of C to be classical, whereas C,-residues cannot be classical in a
chamber system as in (v) of Theorem 5.6. Hence D = C,.

Assume now that no Cs-residues of C are as in (v) of Theorem 5.6. Then
C is locally classical. Furthermore, C is finite [51]. Thus we can apply Lemma
6.1, obtaining that C is locally reducible, except perhaps if some rank 3
residues of C were isomorphic with the 32:2-chamber system. However, this
possibility is ruled out by the following inductive argument.

Let a residue C; be isomorphic with the 32:2-chamber system, if possible.
Then n > 5 and there is a set of types H containing two types 1,j € J such
that the diagram induced on H is A, with 4 < m < n. We have Cy =
PG(m, q) for some prime power ¢, by induction, and Py /Ky > Lm1(g), by
a theorem of Higman [12]. Furthermore, ¢ = 2 as C has order 2 at the types ¢
and j and P,;/K;; = 3%:2, as C; is isomorphic with the 3%:2-chamber system.
However L, ,1(¢) does not contain any parabolic subgroup Py of rank 2 and
such that Py, /Ky, = 3%:2. A contradiction has been reached.

Therefore C is locally reducible. Hence all C; residues of C are polar spaces
by Corollary 5.7 and Lemma 6.3. The universal 2-cover € of C is a building
by Proposition 3.3. By Theorem 2.5, C =¢. O

By Theorem 6.5 and Corollary 5.7 we easily get the following well known
result (see [41]; also [40]).

Corollary 8.6 Let D be connected, of spherical type and rank n > 3 and let
C be locally classical. Then C s either a buslding or the Ar-geometry.

6.3 Affine Diagrams

Lemma 6.7 Let C be locally classical and assume the following:

(t) for every triple of types J such that D; has just one edge, there ts a set
of types H such that |H|> 3, |H N J|> 2 and Dy is a connected spherical
diagram;

(1) for every triple of types J with D trivial, there are sets of types H and
H' suchthat HUH' D J, HNH'NJ # @ and both Dy and Dy are connected
spherical diagrams;

(t43) none of the residues of C of rank 4 is isomorphic with the Wester chamber
system (defined in 4.6);

Then C is locally reducible

Proof. Let J = {1, j,k} be a triple of types with D disconnected and let C;
be any of the residues of C of type J. Let C; be irreducible, if possible.
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We first assume that D, is non-trivial. By Theorem 5.2, P;/K;, P;/K;
and P;/K, are cyclic groups. On the other hand, this is impossible for at
least two of those types, by (i), by Theorem 6.5 and by a theorem of Seitz
[31]. We have reached a contradiction. Thus, Dy is trivial.

By (i), there is a set H of types containing at least two of the types of
J and such that Dy is connected and spherical. By Corollary 6.6, by [31]
and (ii), Py /Ky is either a classical group or the alternating group A7. In
the latter case, Cy is either PG(3,2) or the Ar-geometry. In any case, Cy is
geometric.

Let Py/Kyg be classical, if possible. We can assume without loss that
1,J € H. Let X = P, N P;;. As Cy is irreducible, X properly contains B.
Therefore X = Py for some h € H, as Py /Ky i8 a classical group. On the
other hand, X is different from any of P; and P;, by (P2). Hence X = P, for
some h € H — {i,5}. However, Py £ P;j, because Cy is geometric. We have
reached a contradiction.

Therefore, if H is a set of types containing two of the types i, j, k£ and
such that Dy is connected and spherical, then H has size 3, Py /Ky = Az
and Cy is either PG(3,2) or the Ar-geometry. C has order 2 at each of the
types i, j, k, each of the groups P,/ K;, P;/K;, Pi/K; is isomorphic with
S3 and each of the groups P;;/K;;, P;3/Kji, Pii[ Ky is isomorphic with the
subgroup 3%:2 of A¢ described in Subsection 4.3. Note that this group has
just three subgroups isomorphic with S3 and containing a given 2-subgroup.

We must rule out this case. As Cy is irreducible, X = P N P,; properly
contains B. Furthermore, X does not contain any of P;, P;, by (P2). There-
fore X/K,; is one of the three subgroups of F,;/K;; isomorphic with S5 and
containing B/K;; (= Z;). Pi/K,; and P;/K;; are the other two subgroups
with those properties. On the other hand, B has index 3 in P, as C has order
2 at k. Hence X = P;. It is now clear that C; is the 32:2-chamber system.

Let H contain i and j with Py /Ky = A, and Cy isomorphic either to
PG(3,2) or to the Ar-geometry. We have already proved that P, < P.P;.
Hence P;; = P;, Ky £ K; and Py < Py. Therefore Kyupy = K,
PHU{k}/KHU{k} = Py/Kn = A7 and Py/Ky = Pij/Ky = 22-(32.2). The
groups P;/Ky, P;j/Ky and P/Kpy are the subgroups of A; called Py, P_
and P; in Subsection 4.6 and Cyys} is the Wester chamber system. However,
(iii) forbids this. O

We assume that D is of affine type in the next theorem. We presume that
the reader knows the list of affine Coxeter diagrams (anyhow, he can find it
in [3], VI, 4.3).

Theorem 6.8 Let C be locally classical and let D be of affine type. Then
esther the universal 2-cover of C is a butlding or C is the Wester chamber
system.
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Proof. By Theorem 2.3, we can assume that C has rank n > 4. Let C be not
the Wester chamber system. Then it is easy to check that (i), (ii) and (1)
of Lemma 6.5 hold in D and C. Hence C is locally reducible (note that we
cannot use Lemma 6.1 now, as we do not know if B is finite).

By Corollary 6.6 and Lemma 6.3, all residues of C of type Aj are projective
geometries and all residues of C of type C; are polar spaces, except possibly
when D = B; with uniform order 2 (in this case, some Cy-residues might be
isomorphic to the A;-geometry). Thus, if D # Bj, then the universal 2-cover
of C is a building, by Proposition 3.3.

Let D = B;. If none of the rank 3 residues of C is isomorphic with the A;-
geometry, then C is a 2-quotient of a building by Proposition 3.3. Thus, we
assume that some residues of C are isomorphic with the A,-geometry. Stroth
[36] (Lemma 3.3) has proved that a locally classical transitive chamber system
C of type B, admitting the A7-geometry as a residue, must be tight. Howerver,
a stronger conclusion is implicit in his proof: namely, that C is just the Wester
chamber system. (We warn that Stroth assumes the finiteness of B in [36],
but he does not exploit that hypothesis in the proof of Lemma 3.3 of [36].) O

6.4 A Result on Disconnected Diagrams

Lemma 8.9 Let C be locally classical and assume the following:

(i) for every triple of types J with D disconnected, there is a set of types H
such that |H|> 3, |HNJ|> 2 and Dy is a connected spherical diagram,

(18) for every triple of types J such that Dy = As or C3, P;/K is not the
alternating group As.

Then C is locally reducible.

The proof is similar to that of Lemma 6.7. We leave it for the reader. The fol-
lowing thoerem can be proved by an argument quite similar to that employed
for Theorem 6.8, but using Lemma 6.9 instead of Lemma 6.7.

Theorem 6.10 LetC be locally classical, of rank > 4, and let D have just two
connected components Jy, J5, of spherical or affine type. Assume also that,
for every triple of types J with Dy = A3 or Cs3, Py| Ky is not the alternating
group A7. Then the unswersal 2-cover of C s a building.

Remark. (i) of Lemma 6.9 forces D to admit at most two connected com-
ponents. Note that (ii) of Lemma 6.7 is rather stronger. It implies that D is
either connected or the disjoint union of two complete graphs.

Problem. What can we say when D has more than two connected compo-
nents ?
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EMBEDDINGS AND HYPERPLANES
OF LIE INCIDENCE GEOMETRIES

Ernest E. Shult

1. EMBEDDINGS OF POINT-LINE GEOMETRIES

Embeddings. Let T' = (P,£) be a point-line geometry, that is, an
incidence system of points P and lines £, such that distinct lines possess
distinct point-shadows, thus allowing lines to be viewed as sets of points.
A projective embedding of point-line geometry T' into the projective
space P(V) of all proper subspaces of the vector space V is an injective
mapping e : P — projective points of P(V) = 1-spaces of V' such that

(1) e(L) is a projective line for each line L of £, and

(2) the image points e(P) span P(V).
Such an embedding is denoted by the symbol e:T' — P(V).

Morphisms of embeddings. Let 7: V — W be a semilinear trans-
formation of vector spaces. This induces a partial mapping of the corre-
sponding projective spaces P(V) and P(W), sending points of P(V') not
contained in kerr in P(V) to projective points of P(W). With some
abuse of notation, we denote this by 7: P(V) - P(W). If e: T — P(V)
is a projective embedding of the point-line geometry T, then composition
with the partial map 7 can yield a new embedding er if and only if

(1) 7 is a surjective semilinear transformation, and

(2) For any points p and ¢ of T', ker 7 meets the subspace

< e(p),e(q) > at the zero subspace of V.

In this case we call the transfer from embedding e to embedding er,
a morphism of embeddings and write e — er. In general if we insist
that e — ¢’ is a morphism of embeddings, it means that ¢/ = er for
an appropiate semilinear transformation 7. If kerr is the zero vector
space, ¢ and e’ are said to be equivalent embeddings. Morphisms
can be composed in the obvious way, and the collection of all projective
embeddings of I' along with all their morphisms forms a category £ .

Universal Embeddings. An embedding u : ' — P(V) is said to be
relatively universal if and only if the existence of a morphism w — u
in category £ implies w is equivalent to . An embedding u is said to

be universal for e if and only if u is relatively universal and there is a
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morphism « : u — e with the property that for any morphism ¢ :w — e,
there exists a morphism ¢’ : u — w such that x is the composition of ¢
and ¢'. Clearly any two embeddings universal for e are equivalent; we
call any of them the universal hull of e. An important theorem of Mark
Ronan states that every embedding possesses a universal hull (see [15]).

There is another entirely different notion of “universalness” for an em-
bedding of a point-line geometry. We say that an embedding u : ' — P(V)
is absolutely universal if and only if for any embedding e, there is in £
a morphism ¢.:u —e.

The two notions can be compared as follows: An absolutely universal
embedding is a source in the category &. The universal hull of embedding
e is a source in the induced subcategory £, of all objects sending an arrow
into e. But if there is a morphism ¢ — f, both e and f have equivalent
universal hulls. Thus (using Ronan’s Theorem) the relatively universal
embeddings are the sources of the connected components of £ viewed as a
digraph.

Automorphisms of the geometry which lift to the embedded
geometry. Suppose o is an automorphism of the point-line geometry
I' and that e : I' — P(V) is an embedding of the geometry. Then the
composition oe is also an embedding of I'. In this way G = Aut(T) acts

as a group of natural transformations of £ . Clearly the set
G. = {0 € Aut(T)| oe is equivalent to e}

is a subgroup of Aut(G). Moreover, each element of this group, when
applied to the embedded point-line geometry (e(P),e(L)) lifts to an auto-
morphism of the ambient projective space P(V). In this way, one obtains
an injective morphism of groups: G, — PTL(V).

It is easily seen from Ronan’s homological construction of the universal
hull é of embedding e, that G, is a subgroup of G;.

If u is an absolutely universal embedding, then G, = Aut(I')— that
is, all automorphisms of I' lift to automorphisms of the ambient projective

space in which u embedds it.

A question. Of course, in general, there is nothing to insure that an

absolutely universal embedding of a geometry exists, or that a relatively



SHULT: Lie incidence geometries 217

universal embedding of a geometry admit many automorphisms at all. Yet
it seems to be the case that the classical Lie incidence geometries pos-
sess essentially one relatively universal embedding as a point-line geometry.
And it virtually always seems to be the case that the relatively universal
embedding admits the full automorphism group G of the Lie incidence
geometry—that is, the embedding is into P(M) where M is a particular
G-module. We would like to find why this is so from first principles which
do not involve any knowledge of weight-modules or any other paraphenalia

of the representation theory of Lie-type groups.

2. HYPERPLANES OF POINT-LINE GEOMETRIES

A subspace of a point-line geometry I' = (P, L) is a subset X of P,
such that any line with at least two of its points in X is in fact contained
in X. The subspace X is proper if it is not all of P. A hyperplane
is a proper subspace which meets each line non-trivially. We let V denote
the set of all hyperplanes of I'. In order to endow V with some sort of

geometric structure we consider the following three hypotheses.
(Veldkamp Points Exist) Every hyperplane is @ maximal subspace of T'.

(Veldkamp Lines Exist) If A, B and C are hyperplanes of ' with A
not contained in C, but ANBCC, then ANCCB.

(Velkamp Planes Exist) If A, B, C, and D are hyperplanes of T with
ANBNCCD but AN B 1s not contained in D, then ANBNDCC

By allowing some of the hyperplanes to be equal, is is easy to see that
each of the above hypotheses implies its predecessors. In fact the general
hypothesis is

(Veldkamp (r—1)-spaces Exist, r > 0) For any hyperplanes A,,..., A1
such that Ay N...N A, C Appy but AyN...NAy € Apq1 then
Ain...NA-1NA4,.4 CA,

One may recognize these axioms as versions of the exchange axiom of a
dependance relation, but limited to sets of small cardinality (see [7]).

A well-known sufficient condition that Veldkamp points exist is that
the induced point-collinearity graph on the complement of a hyperplane be
connected. Similarly Velkamp lines exist if it can be shown that 4—(ANB)

always has a connected collinearity graph for any two hyperplanes A and
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B. Similar criteria apply in general, and in this way it can easily by shown
that Velkamp (r — 1) - spaces exist for non-degenerate polar spaces of rank
r. (See [16] or [3] for all of the assertions of this paragraph.)

The importance of the hypothesis that Veldkamp lines exist is that in its
presence V acquires the structure of a linear space called the Veldkamp
space. Its points are the hyperplanes of (P,L), and its lines are the
intersections of pairs of distinct hyperplanes, incidence being containment.
That any line is uniquely determined by any two of its points is exactly the
assertion that Veldkamp lines exist.

Another important hypothesis is the following:

(Teirlink’s Condition (compare with [22])) If A end B are distinct
hyperplanes of T' = (P,L) and p is a point of P — (AU B), then there
is @ unique hyperplane C' of T' containing {p} U (AN B).

We now have

THEOREM 1. ([19]) Suppose Veldkamp planes exists and that Teir-
link’s condition holds for T'. Then the Veldkamp space V is a projective

space.

REMARK: Note that whenever Velkamp lines exist, Teirlink’s condition
can be weakened by deleting the word “unique”. The proof of this theorem
appears in working notes kindly supplied to me by Professor A. Pasini,
who, in generalizing beyond polar spaces the argument that V is a projec-
tive space saw that the hypothesis that Veldkamp planes exist was needed,

though it was not so named at the time.

3. EMBEDDINGS AND HYPERPLANES.

Hyperplanes Arising from an Embedding. Let ¢ : ' — P(V) be
a projective embedding of the point-line geometry I' = (P,L) . Suppose
H is a hyperplane of P(V). Then it is easy to see that the set

H(H) := {z € P| e(z) € H}

is a hyperplane of I'. A hyperplane H of T' is said to arise from the
embedding e if and only if it has the form H = H(H) for some projective
hyperplane H of the ambient target space (e(P)) = P(V). We denote the
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set of all hyperplanes which arise from the embedding e by the symbol
V.. As usual V will denote the set of all hyperplanes of T'.

THEOREM 2. V, =V implies that e is a relatively universal em-
bedding.

THEOREM 3. Suppose e¢:T' — P(V) is an embedding of the point-
line geometry T' for which Veldkamp lines exist. Then V, is a projective

subspace of the linear space V.

Embeddings Constructed from V. Suppose Veldkamp lines exist
so V is a linear space. Given a point p of the geometry I',let V, = {H €
Vip€ H}. When is V, a hyperplane of V?

THEOREM 4. If Veldkamp lines exist and Teirlink’s condition holds
for T', then V, is a hyperplane of the linear space V.

It now follows that if Veldkamp lines exist, if Tierlink’s condition holds,

and if, for some reason, V is a projective space, then there is an embedding
@: T -V

where Vg is the subspace of V* generated by hyperplanes V, as p ranges

over P. In particular, from Theorem 1, we have

COROLLARY 1. If Veldkamp planes exist and Teirlink’s condition
holds for T' then the projective embedding 4 exists.

Historically this was the original approach taken by Veldkamp for polar
spaces of rank at least three—as recast by Buekenhout and Cohen in their
book ([3]). All of the results listed so far in this section are either well-
known or have proofs easily lifted from those applied to polar spaces in [3],
(4], [14] and [10].

Question: Is @ relatively universal?

The Hypothesis (A). We consider here the following hypothesis:
(A): (1) Veldkamp lines exist for T'.
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(ii) There exists an embedding e : I' — P(V) with V, =V and
with dim(P(V)) finite.

The reader should note that (ii) does not imply (i) (Certain classical
generalized quadrangles are the counterexamples.).
We have

THEOREM 5. Hypothesis (A) implies Teirlink’s condition.

The assumption that V, = V in part (ii) of Hypothesis (A) implies
VY ~ (P(V)*) as projective spaces. So in (ii), V is a projective space of
finite dimension. By the remark preceeding the Corollary 1, @ : ' — Vg is
an embedding of T into a finite dimensional projective space.

At this point it will be useful to unfold a few consequences of Hypothesis
(A) in the form of a series of Lemmas whose proofs are sketched when

necessary.

LEMMA 1. Assume part (ii) of Hypothesis (A) only. Then the follow-
ing are equivalent:

(a) Veldkamp lines exist.

(b) For any subspace R of codimension at most two in P(V), R =
{e(P)NR} —ie. R is spanned by the image points which it contains.

REMARK: In general, if e : ' — P(V) satisfies V, =V and Veldkamp
(r — 1)-spaces exist for ', then any subspace R of codimension at most
r in P(V) is generated by the points of e(P) within it (see [16]).

NOTATION: If ¢: T — P(V) is an embedding of ' and =z is a projec-
tive point of P(V), set

H, = {H € V| P({e(H))) contains z}
Note that z need not be in ¢(P).
LEMMA 2. Assume Hypothesis (A). H, is a hyperplane of V

SKETCH OF PROOF: Let L be the Veldkamp line generated by hyper-
planes A and B of ' —e. L={H€V|HD2ANB}. Nowas V=Y,
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we see that A = H(A) and B = H(B) for hyperplanes A and B of
P(V) and there exists a bijection sending L into the set of hyperplanes of
P(V) which contain ANB. One or all of these contain z. Finally H, is
not all of V since there exists a hyperplane complement to z in P(V).

LEMMA 3. Assume (A). The mapping
¢:P(V)y->V*

defined by sending ¢ to H,, and sending lines to the intersection of the
H,, y ranging over the points of the line, is an isomorphism of projective
spaces. Moreover ¢(P(V)) =)y .

SKETCH OF PROOF: Since V = V., we have an isomorphism v :
(P(V))* =V which maps any hyperplane A of P(V) to H(A), and the
collection of all hyperplanes over any codimension 2 subspace of P(V), to
the Veldkamp line of V defined by the 1 -image of any two hyperplanes
of this collection. Thus v is an isomorphism of projective spaces. Also ¥
takes the collection of all projective hyperplanes on z onto the set H,:
the former is an element of (P(V))**, while the latter is an element of V*.

Noting that P(V) has finite dimension, we obtain a dual isomorphism
»* V- (P(V))*.

Then ¢ is the inverse of the composition of * with the canonical iso-
morphism eval : (P(V))** — P(V), using finiteness of dimension once

again.
LEMMA 4. Assume (A). Then ¢ induces an equivalence e — 4.

COROLLARY 2. Assume (A). Then all embeddings f for which Vy =

V are equivalent to e (or 4 ).

Now suppose e : ' = P(V) is as in Hypothesis (A)(ii). Let o be
an automorphism of T' and let ge : I' = P(V) be the composition of o
and e. Then clearly V = V,.. If Veldkamp lines exist (so that the full
Hypothesis (A) is in force), it follows from Corollary 2 that oe ~ 4 ~ ¢
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since oe is relatively universal by Theorem 2. But to say that e¢ and oe

are equivalent embeddings is to say that there is a semilinear transformation
& :P(V) = P(V) such that eod = e . Thus

THEOREM 6. Assume Hypothesis (A) relative to the embedding e.
Then e admits the group G = Aut(T'), so there is an embedding G —
PTL(V). Thus V is automatically a G -module.

This result does not prove that e is absolutely universal—that is, that
the category £ is connected as a digraph. It does , however, show that the
connected component of £ which contains e is invariant under the group

of natural transformations induced by G.

But now assume I' satisfies Hypothesis (A) relative to the embedding
e: T = P(V). Then by Lemma 3 we have the isomorphism V; = V* ~
P(V) of projective spaces. More precisely,

(*) every hyperplane of the projective space V has the form H, for
some z € P(V), and if the hyperpane Hx contains HyNH, , for distinct
y,z € P(V), then z is on the line yz of P(V).

Suppose now, that f : ' — P(W) is any arbitrary embedding in €.
Then by Corollary 2, Vy is a subspace of the projective Veldkamp space
V. There is then a vector space Vo ~ V* and a subspace V; of V such
that V=P(Vp), Vs =P(Vy), V* =P(Vy) and V; =P(V}).

Since Vy <V, there is an exact sequence
0K VL V=0

where K consists of all functionals of V' which vanish on Vj, - that is,
P(K) is all hyperplanes of P(V) which contain P(V}). Then 7 induces
a mapping

T: V' - P(K) =V}

We claim that T defines a morphism 4 — f in the category €. For
this purpose we need only show that for any two points p and ¢,in I' =
(P, L), the vector space (u(p),4(q)) is disjoint from K .

Suppose by way of contradiction, that X € P(K)n{d(p), %(q))v+ . Thus,

as a collection of geometric hyperplanes of V', X contains all hyperplanes
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of T' arising from f and also contains all hyperplanes of i(p),#(q), or,
equivalently, the full set of hyperplanes of I' containing the line L = pq.

Now by (*), X has the form H, for some point z in the projective
line e(L) generated by e(p) and e(q). Let U be a projective hyperplane
of P(W) containing f(g) but not f(p). Then H = f~1(UN f(P)) is a
geometric hyperplane of I' belonging to V. But since V=V, , H arises
from e, and so H = e~ !(HN e(P)) for some projective hyperplane H of
P(V). Since ¢ € H, e(q) isin H. Similarly, p is not in H, whence
e(p) is not in H. On the other hand, since H € Vy, H is a member
of the collection X = H,, so z € H, as well. Thus z, e(p) and e(q)
are points of the projective line e(L) = e(p)e(q), and H is a hyperplane
of P(V) which contains z and e(g) but not e(p). Since e(p) # e(q)
this forces z = e(q). But by repeating the argument replacing U by a
projective hyperplane U’ of P(W) containing f(p) but not f(g), one
deduces z = e(p) as well. Clearly both possibilities are impossible, so
no such X exists. It follows that 7 induces a morphism of embeddings
4 — ut, where ur embedds I' into V5.

It remains only to show that 4r is equivalent to f. But the map
7:V* = P(K) — V} is effected by taking any hyperplane A* of V which
does not contain V; and intersecting it with V; to yield a hyperplane
A*N Vs, an element of V}. Thus dr takes each point p to H,NV;. On
the other hand f is equivalent to fof* (the compositionof f:T' — P(W)
and the projective-space isomorphism f*: P(W) — V} ), which takes each
point z of P(W) to the collection

{FHANF(P)If(z) € A € P(W)},

which, for p € T' yields the same set H, N V.
Thus there is a morphism @ — f, and as f was arbitrary, @ is abso-

lutely universal.
Thus:

THEOREM 7. Assume I' satisfies Hypothesis(A) with respect of the

embedding e. Then e is absolutely universal.

So the question raised in Section 1, whether embeddings of Lie incidence

geometries must come from G-modules leads to two fundamental questions:
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(1) When do Veldkamp lines exist for these incidence geometries?

(2) When is there an embedding e of the geometry such that all hy-
perplanes arise from it?

In the next two sections we review what is known concerning these two

questions.

4. EXISTENCE OF VELDKAMP LINES AND PLANES.

Flats. For subsets B, A,,... A in a family F of subsets of a set X,
we say that B depends on {A;,...A;} ifandonlyif A;N...NnA4A; C B.
This notion of dependence satisfies the first two laws of a dependence theory
as expounded in Cohn ([7]): namely, the reflexive and transitive laws. What
is missing that would give F the full strucure of a dependence theory or
matroid is the exchange axiom. In fact if X =P and F is the collection
V of all hyperplanes of T' = (P, L) , then the assertion that Veldkamp
(r — 1) -spaces exist is the assertion that

If C dependson {A),...,A._1} but not {A;,...,A,_2}, then A,
depends on {A,,...,4,-2,C}.

Let I = HyN...NH; be an intersection of hyperplanes H; of I'. Then
the set

iily:={HeV|HDI}

of all hyperplanes depending on [ is called a flat.

It is easy to see that if Veldkamp lines exist, then a flat fi(I) is a sub-
space of the Veldkamp space V. But even when V is a projective space
(as when also ¥V =V, ), i(I) need not be the subspace generated by the
Veldkamp points H,,... Hy, although it must contain the latter. In fact,
the assertion that Veldkamp (r — 1)-spaces exist is precisely the asser-
tion that flats fl(J) are the subspaces generated by the Veldkamp points
H,,... H;, whenever the latter are k < r independant hyperplanes whose

intersection is J .

EXAMPLE: Veldkamp planes do not exist for the Grassmannians I' =
Gr(V) (see [19]). (If the Grassmannian is non- embeddable, V is a linear
space, but is not even projective ([13]). If the Grassmannian is embeddable,
the embedding e : I' —» P(W) where W is the k-fold wedge product of
the V'’s, is a G -admissable embedding, where G = Aut(T") = PTL(V), so

under the isomorphism P(W)* — V, V becomes a projective G -module
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with a special G -invariant system of flats that includes all lines, but not

all planes.

A special class of strong parapolar space. In order to obtain a fuirly
uniform proof that Veldkamp lines or planes exist, the following families of
geometries were introduced in [16].

Let n be an integer greater than one. A point-line geometry I' = (P, L)
is in the class €&, if and only if it satisfies the following axioms:

(E1) T is aconnected Gamma space.
(E2) Any geodesic path (p;,...,px) in the point-collinearity graph
(P,~) can be extended to one of length n; moreover diam(P,~)=rn.

(E3) For any point p, the set AX_,(p) of points at distance at most
n—1 from p in (P,~) forms a hyperplane of T'.

(E4) If p and ¢ are two points of ' at distance d in (P,~), 2 <
d < n, the convex closure (p,¢)r (i.e. the intersection of all subspaces S
containing p and ¢ which are convex subsets of (P, ~) ) is a subgeometry

belonging to &;.

Note that the class & is the class of non-degenerate polar spaces. Thus
if p and ¢ are two points at distance 2 in (P,~), then then (p,q¢)r is a
convex subspace which is a polar space—i.e. a symplecton. By (E;) any
distance-2 pair of points lies in some symplecton, so the geometries of &,

are strong parapolar spaces of point-diameter n.

KNOWN EXAMPLES

Example symplectic rank n
1. Polar spaces >2 2
2. Near Polygons with quads (see [21]) 2 >2
3. Grassmannians Azn—y (D) 3 >2
4. Half-spin geometries D, ,(F'), n even 4 >2
5. E71(F) 6 3

In example 3, D is a division ring, while in examples 4 and 5, F is a

field. Example 5 is a Lie incidence coset geometry whose points are the
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cosets of the maximal parabolic subgroup P of the algebraic group E(F)

associated with the terminal node of the longest arm of the Dynkin diagram.
Now define the family F, , n > 2 as follows: A point-line geometry
I'=(P,L) isin F, if and only if
(F1) diameter (P,~) is n > 2.
(F2) If d(z,y) =d < n, then (z,y)p €&

We list below the known examples of these geometries beyond the mem-
bers of £, that are not polar spaces, near polygons with quads or a product

geometry T'y x Ty, T; € Fugyy -
EXAMPLES OF GEOMETRIES IN F,

Example symplectic rank n
1. Grassmannians A, x(D), k<(n+1)/2 3 k
2. Half-spin geometries D, ,(F) 4 [n/2]
3. Esa(F) 5 2
4, E7,(F) 6 3

THEOREM 8.([16],{19]) Let I' € F,, n > 2 and suppose ' has sym-
plectic rank at least r.

(i) If r >3 , Veldkamp lines exist.

(i1) If r > 4 , Veldkamp planes exist.

COROLLARY 3. In the list of examples of geometries in F, , examples
1-4 have Veldkamp lines, while examples 2-4 have Veldkamp planes.

REMARK: The proof of Theorem 8 immediately reduces to proving it for
geometries I' in &, rather than F, . The result that Veldkamp (r —1)-
spaces exist for polar spaces is proved in the book of Buekenhout and
Cohen ([3])—although not exactly in these terms—and is used throughout
the proof of this Theorem.

Strangely, there seems to be some obstacle to the proof of

CONJECTURE: If T € F,, has symplectic rank r > 4 , then Veldkamp

(r — 1) -spaces exist.

Open Questions and Side-issues.
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1. Prove the conjecture.

2. Are all geometries in &, with symplectic rank 2 necessarily near
polygons?

3. Aside from the classical examples (dual polar spaces) are there any
geometries in £, , n > 3 , with symplectic rank 27

4. Are there any further examples of geometries in £, , with symplectic
rank at least 3, aside from those listed above? Evidence suggesting the

answer might be negative is offered by

Proposition (El-Atrash and Shult, unpublished, [12]) Assume T is a mem-
ber of F,, n > 2 having symplectic rank at least three.

(i) Suppose T' € & and that two symplecta never meet in exactly a
single point. Then T is the Grassmanian As2(D) or E7,(F).

(ii) Suppose T satisfies the weak hexagon property:

(WH) If (zo,...,zs) is a6-circuit in (P,~) with d(z;,zi43) =3 for
at least one subscript i (mod 3), then there exists a point p in z3-Nz3 Nzf
orin ziNzinNzi.

Then T is either a polar space, a Grassmannian, a half-spin
geometry, Eg,(F), or Eq7,(F).

(The proof uses the fundamental characterization of Lie incidence geome-
tries due to Cohen and Cooperstein ([6])

5. Do the other classical Lie incidence geometries of symplectic rank
> 3 (such as the polar Grassmannians, the metasymplectic spaces, the ex-
ceptional geometries Eg4,E7 7, 0r Eg;, j indexing an end-node) possess
Veldkamp lines?

5. WHEN DO HYPERPLANES ARISE FROM EMBEDDINGS?

We are concerned here with the second of the two questions raised at
the end of Section 3: When is it true that V =V, ?

(Of course we must assume e is relatively universal (it is necessary by
Theorem 2, and there is no loss in the assumption by Ronan’s construc-
tion)).

In the case of the non-degenerate polar spaces, the answer is “always”.
This follows from the fact that the relatively universal embeddings of these

geometries are completely known from the theorems of Buekenhout-LeFevre,
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Dienst and Lemma 8.6 of Tits’ book ([2], [11], [23]). All of these embed-
dings are the natural defining embeddings with an appropriate sesquilinear
or pseudoquadratic form. Any hyperplane H is itself a (possibly degener-
ate) polar subspace, and if H is degenerate it arises from a hyperplane of
the form p'. Otherwise H is nondegenerate and by the quoted results the
restriction of the embedding to H is also a “natural” one. The only known
case where the embedded H still spans the target space for e requires e

not to be universal.

For embeddings e of the other Lie incidence geometries, there are three

methods for showing that V =V, , which have been successful.

METHOD 1. (Circuitry) By results of Ronan ([15]), for a strong para-
polar space, it is sufficient to show that for any hyperplane H of T', that
in the subgraph of (P, ~) induced on P — H, every circuit C is a sum of
triangles and 4-circuits. Since this property does not depend on the partic-
ular embedding, it means V =V, for every relatively universal embedding
e. (It will then follow from Corollary 2 that if Veldkamp lines exist, e is

absolutely universal without invoking Theorem 7.)

METHOD 2. (Inductive construction of a functional) If e : ' — P(V)
is the embedding, we wish to show that for each hyperplane H of T,
there exists a functional A : V — F of V such that e o h vanishes on
H but never vanishes on P — H. Inductively there exists a family &
of subgeometries of I' belonging to a parameterized family of geometries
containing I' and such that the restriction of e to S in S is still relatively

universal. Then for each S € S, there exists by induction a functional
hs:(e(S)) :=Ws > F

which vanishes on e(S N H) but not on e(S — H) (if the latter is empty,
of course, hs = 0). The problem is to patch the ks together to produce
the desired functional k. (To do this, there is a constant adjustment of the
hs by scalar multiples that involves further circuitry problems—this time
on a graph with vertex set P(V').) This was the method used in [18].

METHOD 3. (The direct sum method) This method also uses induction

in a different way. We assutne as before that e : I' — P(V) is relatively
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universal. Again T' is assumed to belong to a family of geometries pa-
rameterized by an integer-valued function 7. The theorem being proved
asserts that for some function § : Z — Z, if dimV > §(r(T')), then (a)
dimV = §(7(T')) and (b) V = V.. The geometries I' must have the prop-
erty that they always possess two subgeometries S; and S; in the same
parameterized family satisfying

(1) (S1,S52)p = P (subspace generation in I'), and

(2) 8(7(S1)) + 6(7(S2)) < 6(r(T)) .

Induction on the S; immediately yields the fact that V = (e(S))) &
(e(S2)) and that dim(e(S;)),, = 6(7(S;)). By induction, the hyperplane
H can be assumed to meet each S; properly at a hyperplane H; of S;.
One sets X to be all points ¢ of H such that e(z) is not in the subspace
U := (e(H,)) ® (e(S;)) of codimension 2in V. For z,y € X, one writes

t~y fandonly if U & (z) =U & (y).

The rest of the proof consists in showing that the graph (X,~) is con-

nected.

Summarizing known results, we have:

Geometry Reference Method
1. Projective spaces Folklore uniqueness
2. Polar spaces of rank > 2 Buekenhout-LeFevre,  hard work
Dienst, Tits
3. Eg,1(F),Dss5(F) Cooperstein and Shult circuitry
and An,(F) (8], [9]
4. Ank,2<[(n+1)/2] Shult [18] functional

5. Spin geometries (Dual polar Shult and Thas [20] direct sum
spaces of type Q(2n + 1, F),
F =GF(q),q odd.)

6. Half spin geometries, Shult [17] direct sum
D u(F)

OPEN CASES:
1.) Other dual polar spaces (types Q= (2n,F),2n + 1,F), with F

infinite of odd characteristic, n > 3.
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2.) Other exceptional geometries: Metasymplectic spaces, Eg4,E7 7
and Fg; where j corresponds to a terminal node of the Eg diagram.
3.) Grassmann versions of the above (where points are cosets of a

maximal parabolic subgroup corresponding to a non-terminal node).

6. EMBEDDINGS AND MODULES.

We put a few things together. We now know that Hypothesis (A) holds
for the embeddable Grassmannians, the half-spin geometries, and the ex-
ceptional geometry Fs; , where, in the respective cases V is the appropri-
ate wedge product space, the half-spin module, or e is the universal hull
of the embedding afforded by the module of dimension 27. Thus in each
case the embedding is in fact G = Aut(T') -admissable (which was known
for these classical weight modules anyway) and, by Theorem 7, all embed-
dings of these point-line geometries are morphic images of the classical one
(which was known to hold for the Grassmannians, half-spin geometries and

odd-characteristic spin geometries, by a beautiful result of Albert Wells

([24])).

It would be especially nice to know whether all hyperplanes arise from
an embedding in the case of the geometry E7,; where Veldkamp lines are
already known to exist. Either part of Hypothesis (A), the existence of
Veldkamp lines or the fact that V = V, for some embedding e, remains
completely unknown for the parapolar spaces which are not strongly para-
polar, such as Fy;, 2Es (as a metasymplectic space), E7 7, or Es; with

j marking a terminal node.
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We will speak about the structure of £(D,G) as opposed to the study
of other classes of subgroups, like, for example, subgroups, generated by
a given type of elements/subgroups (say, transvections, reflections, root
elements, ... ), defined by group theoretic properties (say, abelian, nilpotent,
soluble, ...), ....

Little can be said about the structure of the lattice £(D,G) in general.
In fact it is proven in [Tu] that any algebraic lattice is isomorphic to an
interval in the subgroup lattice of an infinite group. This is why, to get
sensible results, one has to specialize the class of groups considered. It turns
out that in amazingly many examples arising in real life the lattice £(D, G)
has a very transparent structure. There are some abstract conditions on a
subgroup D, which are responsible for that (see § 10 and 14).

In our talk the group G will be a Chevalley group or its extension by
diagonal automorphisms, usually over a field. Many results are only known
for the classical groups, and some will be stated only for the general linear
group to save space. We concentrate on results which are valid for arbitrary
fields, not just finite or algebraically closed. This is why we speak only of
normal types. While for a finite group theorist there is a good reason to
consider also the twisted groups, for us they are no better than all other
forms of semisimple algebraic groups.

Although we say something about generalizations to commutative rings,
we do not discuss here results which essentially depend on the nature of
the ground ring, or use some deeper ring theory. For the linear and unitary
groups there are non-commutative generalizations of some of the results in
the present paper, which depend on stability conditions, finiteness condi-
tions, or non-commutative localizations. On the other side, for arithmetical
rings there is a theory with many results which have no immediate counter-
parts in the theory we discuss. We leave all these things beyond the horizon.
Some indications may be found in [HO], [PR], [Val6], [Val9], [Z2].

Several general remarks are in order here. First, one should note that
many of the results we state below are easy — sometimes trivial ~ for finite
fields. However for infinite fields they may be extremely difficult. People
working in finite groups do not usually fully realize how much the finiteness
condition — not even the Classification, but such trivial things as counting
arguments or Sylow’s theorem — make life easier. The most striking example
of this is perhaps the theorem of O.King [Ki2] on the overgroups of diagonal
subgroup in SL,.

In some other cases the situation is strictly opposite: the results are
easy to prove for infinite fields using Zariski topology and ‘general position’
arguments — which deliver no information whatsoever for the finite case.
Sometimes it is easy to account for both the finite and the infinite case
using different proofs for finite and infinite cases. However a ‘natural’ proof
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should cover all cases when a result holds by the same method. In many
situations such natural proofs are still lacking,

Another point is that we describe all overgroups of a given group and
not just the irreducible ones. Moreover we describe them up to inclusion —
not just up to conjugacy. In many situations applying the classification of
irreducible subgroups containing a long root unipotent element, a quadratic
element or the like, from the very start we know the irreducible subgroups
from £(D,G) up to conjugacy. However our work only starts rather than
finishes at this point. One conjugacy class of such overgroups may lead to
parametric families. Even the reduction of the general case to the irreducible
one is not always trivial.

This survey complements [Kn), [V5], [V16], [V17], [V19], [Z1] - [23] rather
than updates them. Many more details about the finite groups of Lie type as
well as the corresponding algebraic groups, and especially on their maximal
subgroups, may be found in [Al] - [A4], [KL1], [KL2], [Kn], [LSa2], [LSel]
- [LSe3], [S6], [S10] — [S15], [T]. A wealth of information concerning linear
case may be found in [Z1] - [Z3]. Parabolic subgroups are discussed in [V5];
overgroups of tori in [V16)], [V17]; overgroups of subsystem subgroups in
[V16]. Consult [K3], [L2], [L6] for different views of the subject. In [V19]
one can find general background on Chevalley groups over rings and many
additional references. The works [BKH], [BV3], [HV], [Sv], [V14], [V15],
[V18] also contain extensive lists of related references, not fully reproduced
here.

§ 1. NOTATION

In this section we introduce the notation used in the rest of this paper.
See [Bo, [C1], [H2], [St], [V19] for more details and further references.

Let ® be a reduced root system of rank I, P be a lattice lying between
the root lattice Q(®) and the weight lattice P(®). From this data one
can construct an affine group scheme Gp(®, ) over Z, such that for any
algebraically closed field K the value Gp(®,K) of this functor on K is
the semisimple algebraic group over K corresponding to the pair &, P,
which is called the Chevalley-Demazure group scheme of type (®,P). Let
T = Tp(®, ) be a split maximal torus of the Chevalley-Demazure group
scheme Gp(®, ). The values Gp(®, R) and Tp(®, R) of these functors on
a commutative ring R with 1 (“the groups of rational points Gp(®, ) and
Tp(®, ) with the coefficients in R”) are called the Chevalley group of type
(®, P) over R and its split mazimal torus respectively. Usually we omit P
in the notation and speak about a “Chevalley group G = G(&®, R) of type &
over R”.

Let L = L be a complex semisimple Lie algebra of type ®. Fix an order
on & with +, &~ and Il = {e,, ..., o;} being the sets of positive, negative
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and fundamental roots respectively. Let {e,, a € ® h,, o € II} be a
Chevalley base of L and L, be its the integral span. Now for an arbitrary
commutative ring R we set Lg = L; @z R.

Let now 7: L — gl(V) be a representation of the complex semisimple
Lie algebra L = L in a finite dimensional vector space V over C. We often
omit the symbol 7 in the action of G on V and for z € L and u € V write zu
instead of m(z)u. Let Vz be an admissible lattice in V' (i.e. V is invariant
under the action of divided powers eJ™ = e™/ml!). Set z,(£) = z%(¢) =
exp(§n(e,)), where o € @, € € R, and ‘exp’ is defined by the usual formula.
For arbitrary commutative ring R we set Vp = V; ® R. The group

E”(Q,R) = <2a(£)7 o€ Q’ { € R) < GL(VR)

is the elementary Chevalley group of type ® over R in the representation =.
Thus if the lattice of weights P(x) of the representation 7 equals P, then the
groups Ep(®, R) and Gp(®, R) from the very start appear together with
their representation in the free R-module Vi = V2 ® R, which we denote by
the same letter «.

The group G, is called simply connected if P(r) = P(®) and adjoint
if P(r) = Q(®). We write G,, and G,4 for simply connected and adjoint
groups respectively. For the cases ® = Eg, F, and G, one has P(®) = Q(&)
and thus G, = G,4. However from our point of view these groups behave
like simply connected groups of other types, rather than like the adjoint
ones.

When R = K is a field the Chevalley group G, (¥, K) is generated by
E,(®,K) and certain semisimple elements. In many important cases, no-
tably, when K is an algebraically closed field, or when G, = G, is simply
connected, one has G,(®,K) = E,(®,K). However in general it is not
true: adjoint groups are strictly larger than their elementary subgroups.
For example, the adjoint group of type A, coincides with PGL(! + 1, K),
while its elementary subgroup coincides with PSL(/ + 1, K). One can lift
this distinction to the level of simply connected groups by considering ‘diag-
onal extensions’ of G,_, the so called extended Chevalley groups, see [BMo],
[V17]. Thus, for example, the extended (simply connected) group of type
A, coincides with GL(I + 1, K)).

To any root a € ® there correspond unipotent root elements z,(€), ¢ €
K. If we want to stress that these root unipotents correspond to a given
choice of a split maximal torus we call them elementary root unipotents.
In general any conjugate of an elementary root unipotent is called a root
untpotent. It is long or short depending on whether the root « is long or
short,.

Let now o € ® and € € K*. As usual we set h(€) = w,(e)wy(1)7,
where w,(€) = z_(e)z_,(—¢ )z, (€). The elements h_(€) — and their con-
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jugates — are called semisimple root elements. They are called long or short
depending on whether the root « is long or short.

For a fixed o € & the map z,: £ — z,({) is a homomorphism of the
additive group R* of R to the one-parameter subgroup X, = {z,(§) | €
R}, which is called the elementary unipotent root subgroup corresponding
to a. In fact 2, is an isomorphism of R* on X,. When it does not lead to
a confusion we omit the epithets “elementary” and “unipotent” and speak
about root elements and root subgroups.

Let now N = N(®, K) be the subgroup of G, generated by T = T(®, K)
and all the elements w, (1), @ € ®. It is very well known that if |K| > 4 the
group N coincides with the normalizer of T in G (see [St]). The quotient
group N/T is canonically isomorphic to the Weyl group W and for any
w € W we fix a preimage n,, of w in N. Usually when we speak about
subgroups containing T we tend to identify w and n,,.

Recall that we have fixed an order of ®, with &* being the corresponding
set of positive roots respectively. Set

U =U(®,R) = (z,(¢), a € *, €€ R).

The product B = B(®, R) of the groups T and U is called the standard
Borel subgroup of G (corresponding to the given choice of T and &%), U is
the unipotent radical of B.

§ 2. ASCHBACHER CLASSES

A convenient framework for systematization of known results on inter-
mediate subgroups is provided by Aschbacher classes C; — C3. These classes
were introduced in the study of maximal subgroups of the finite classical
groups in [Al]. The groups from these classes are ‘obvious’ maximal sub-
groups of a finite classical group. The famous subgroup structure theorem
of Aschbacher says that a maximal subgroup is either in one of these classes
or in the class & consisting of almost simple groups in certain absolutely
irreducible representations (subject to some further restrictions, see [Al],
[KL2)). |

The maximality of groups from Aschbacher classes was completely stud-
ied modulo the Classification by P.Kleidman and M.W.Liebeck, see [KL1],
[KL2], where one can find all the details and many further references (of
course, for many of these groups their maximality was established long be-
fore independently of the Classification).

Many of these classes have natural analogues also in exceptional groups.
They arose in the subgroup structure theorem for the finite exceptional
groups, proven by G.M.Seitz, M.W.Liebeck and others, compare [LSel] and
references there. See also [S12], [S13], [S15], [Te], [LSe3] for the general
picture of maximal subgroups in exceptional groups.
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Here we are interested in subgroups with non-trivial lattice of overgroups.
Most of the large subgroups of Chevalley groups studied so far are obtained
by dropping those additional conditions in the definition of Aschbacher
classes, which guarantee maximality. We can also combine constructions
of several Aschbacher classes and still get large subgroups. Here we infor-
mally describe how it works. Let V' be a minimal representation of a group
G of characteristic p, say the natural representation of a classical group.
Then the classes C; — C; are roughly described as follows (see [Al] and
[KL2] for the details):

C,: Stabilizers of subspaces U < V;

C,: Stabilizers of direct sum decompositions V = U; ®...®U, into similar
summands;

C,: Stabilizers of field extensions of prime degree;

C,: Stabilizers of tensor decompositions V = U, @ U,;
C;: Stabilizers of subfields of prime degree;

Cs: Normalizers of some l-subgroups, | # p;!

C,: Stabilizers of tensor decompositions V = U, ® ... ® U, into similar
factors;

Cg: Classical subgroups.

It is clear what we should do to get large subgroups: we have to omit
extra conditions (the underlined ones) introduced to enforce maximality.
The classes C; and C, are fused and we get summand-wise stabilizers of
direct sum decompositions V = U, & ... ® U,. In the classical cases these
are basically (but not exclusively) subsystem subgroups. The classes C,
and C, are fused and give us factor-wise stabilizers of tensor decompositions
V=U,®...0U,. In the definitions of C; and C; we have only to drop the
word ‘prime’.

We can also combine procedures used in forming various Aschbacher
classes to get other large subgroups. For example, we can fix a direct de-
composition V = U, ®...®U, and then instead of taking the whole stabilizer
of this decomposition consider field extension subgroups on each summand,
etc.

In this paper we discuss at some length the classes C; — C; and their
combinations (sections 3 — 18). This is a very interesting class of subgroups,
which includes for example, maximal tori and subsystem subgroups. These

't is not immediately clear what should be a correct analogue of the
class C4 for infinite fields (not to say rings) and we do not discuss this class
any further.
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classes are discussed for all Chevalley groups, or, at least, for all classical
Chevalley groups.

Due to the lack of time (during the talk) and space (in this survey) we
can not discuss the classes C, + C;, C5 + C3 and S with the same amount
of details. We restrict ourselves to stating a handful of results (sections
19 - 21) showing that the same patterns for distribution of intermediate
subgroups apply also in these cases. We do not even attempt to properly
describe the classes themselves for any group other than GL,. There is of
course a more serious reason for this: the definitive results for most of these
classes in the natural generality are still not available. However the results
are under way and the author hopes to be able to address this topic in later
publications.

§ 3. STANDARD SUBGROUPS

In this section we describe what can be considered an analogue of the
Aschbacher classes C; + C, for all Chevalley groups. Sections 4 — 13 will
be dedicated to the analysis of overgroups of certain large groups from this
class.

The groups U and U~ considered above are special cases of groups
E(S) = E(S,R) which we introduce now for any closed subset S in ®.
Recall that a subset S in @ is called closed if for any two roots o, 3 € S
such that o + # € ®, one has a + § € S. Define E(S) = E(S,R) as the
subgroup generated by all the elementary root subgroups X, o € S, with
respect to T

E(S)=E(S,R) = (z,(¢), € S, £ € R).

Then U and U~ coincide with E(®1) and E(®~) respectively. The groups
E(S) are particularly important when the set S is special (alias unipotent),
i.e. SN(=S) = 0. In this case E(S) is just the product of all X, @ € S, in
any fixed order. Set G(S) = T(®, R)E(S).

Suppose that § C & is any closed set of roots. Then S is the disjoint
union of its reductive (alias symmetric) part S™ which consists of ¢ € S
such that —a € S and its unipotent part S* which consists of @ € S such
that —a: &€ S. The set S” is a closed subsystem of roots while the set S* is
special. Moreover S* is an ideal in S,ie.iff a€ S, €S*and a+ 3 € B,
then a + B € S*. We avoid the common notations St and S~ since we
prefer to reserve them for S* = SN®* and §~ = SN®~. It is easy to see
that the group G(S) is the semidirect product of the reductive subgroup
G(S™) (a Levi subgroup of G(S)) and the unipotent subgroup E(S*) (the
unipotent radical of G(S)) and analogously E(S) is the semidirect product
of E(S™) and E(S*).
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Two sets of roots 5,5, C ® are called conjugate if there exists an element
w of the Weyl group W = W(®) such that wS, = §,. If the sets S, and 5,
are conjugate then there exists an n € N such that nG(S,)n"! = G(S,).
We say that an element w € W normalizes S if wS = S. The set X(S) of
all w € W which normalize S is called the Weyl normalizer of S. It is clear
that X (S) contains the Weyl subgroup W(S) = W(S"). Moreover in the
case when S = S7 is a root subsystem X(S) coincides with the normalizer
of W(S) in W (see [C2]). Denote by N(S) the subgroup of G generated by
G(S) and n,,, w € X(S). A theorem of Tits (see [T2]) implies that almost
always N(S) coincides with the normalizer of G(S) in G. The only cases
when this equality may fail are those of the fields K = F,, F,.

§ 4. PARABOLIC SUBGROUPS

The first example (for many the only one) where one sees intermediate
subgroups is the description of parabolic subgroups due to J.Tits [T1], [Bu].

Recall that we have fixed an order on the root system which determines
II, % and ®~. A standard parabolic subset P is a closed set of roots con-
taining ®*. The standard parabolic subsets are pair-wise non-conjugate
and correspond bijectively to all of the subsets J C II of the fundamental
system. Namely if J C II is such a subset, then we may define P, to be the
smallest closed set of roots containing ®* and —J. The most important
parabolic subsets are the maximal ones. A maximal parabolic subset corre-
sponds to a set J = J,., 1 <r <[, which contains all the fundamental roots
apart from c,. The corresponding parabolic set P, is maximal among the
closed subsets and will be denoted P,.

Standard parabolic subgroups of the Chevalley group G = G(®, K) are
the subgroups which contain the standard Borel subgroup B = B(®, K)
while parabolic subgroups are those conjugated to the standard parabolic
ones. A classical theorem of Tits describes the lattice £(B,G).

Theorem. The map P; — G(P;) is a bijection between the sets of standard
parabolic subsets and of standard parabolic subgroups.

What is remarkable about this theorem is that there are no exceptions,
i.e. it applies to all fields. This is quite unusual. Most of the analogous
results for subgroups other than B break down for some small characteristics
or cardinalities of the ground field.

Another theorem of Tits asserts that overgroups of B have remarkable
properties with respect to conjugation.

Definition. A subgroup B is called abnormal in G if for any x € G one
has z € (B,zBz!).

It is easy to see that saying that B is abnormal in G is equivalent to
saying that
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i) Every subgroup containing B is self-normalizing,
ii) Any two distinct subgroups containing B are not conjugate.

Now another main result of [T1] may be stated as follows.
Theorem. B is ebnormal in G.

The first examples of abnormal subgroups of which one would think, are,
of course,

- Sylow normalizers, i.e. normalizers of the Sylow subgroups in G.

— Carter subgroups of finite soluble groups.

Actually in the case when characteristic of K is positive, B is precisely
the normalizer of U, which is a Sylow p-subgroup of G.

§ 5. SUBGROUPS OF THE BOREL SUBGROUP

The next example is that of overgroups of T in B. This description may
be summarized in the following theorem. Throughout the section we assume
that

K#F,for®=A,1>4,®=E;

K #F,,F, for®=A,,B,,C,,1>2 D,1>3,F,, G,;
K # F,,F, for ® = A,;

K is perfect if char K =2and =C,, [ > 1.

Recall that A, = C,, B, = C;, and D, = C,; x C,. In this paper we
always treat the group SL(2, K) as being symplectic, not linear. The reason
is that like for other symplectic groups (but unlike SL,-,) conjugating a
long root element z,(£) by an element from T we can only multiply £ by
€2 for some ¢ € K*, whereas for all other cases we can multiply ¢ by any
element from K*. This is why squares play such a role in the theory of
symplectic groups and non-perfect fields of characteristic 2 always pop up
as exceptions. Actually to state the first theorem as it is, we have to assume
moreover that

charK £2if®=B,, C,!>2F,,

char K # 2,3if & = G,.

However if we replace closed sets of roots by quasi-closed ones [BT], the
theorem below remains valid without these last assumptions. The same

applies to the two other theorems. The example which follows describes the
lattice £(T, B).

Theorem. The map S — G(S) is a bijection between the set of closed
subsets of @t and the set of subgroups of B containing T.
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This result was stated under different disguises in [S2], [CPS], [B1], [B2],
[Sz1], [V1], [Az], [V21]. Analyzing the proofs of this result, we see that they
give also the following result.

Theorem. T is abnormal in B.

The results show that the behaviour of T as a subgroup of B is very
similar to the behaviour of B as a subgroup of G. The only difference
is that while the results of Tits hold for arbitrary fields, here exceptions
appear: it is easy to check that all excluded cases are actually exceptional.

Any overgroup of an abnormal subgroup is itself abnormal. Since every
abnormal subgroup of G contained in B must contain T, the results above
clearly imply

Theorem. B is a minimal abnormal subgroup in G.

Actually this result holds also for most of the excluded cases. For exam-
ple, this is obviously true for K = F,, since in this case B = U is nilpotent.
The cases K =, F, require somewhat more careful analysis.

The importance of Borel subgroups suggests that it might be interesting
to study minimal abnormal subgroups. Every maximal subgroup is either
normal or abnormal. Classification of minimal abnormal subgroups might
give a new view of the maximal subgroups.

Problem. Classify minimal abnormal subgroups of finite groups of Lie type
up to conjugacy.

§ 6. OVERGROUPS OF SPLIT MAXIMAL TORI

In § 4 and § 5 we described the lattices £(B,G) and £(T, B). Now we
combine these results and describe the lattice £(T, G). This result is already
very much more difficult, than the previous ones. In this and following
sections we give just a vague idea of how it works. One can find many further
details and an almost exhaustive bibliography in the surveys of A.E.Zalesskii
[22], A.S.Kondratiev [Kn] and the author [V16], [V17] (see also [V10], [V14],
[V18], [HV]).

Throughout the section we assume that
|[K|>7if®=A,1>2,D,1>3orif Gis adjoint of type # Eg,F,, G,;
|K] > 13 otherwise.

The numbers 7 and 13 in these conditions are explained as follows: in
the proof we must pick up a nonzero element ¢ distinct from 5 prohibited
values. But when we work with SL, the square of this element should also
avoid these 5 values, this then what prohibits altogether eleven values. Thus
the proof should work starting from the field of 12 elements. For safety we
make it 13.
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Moreover we make the same assumption on the characteristic of the
ground field as in § 5. Again these assumptions are not necessary if we are
ready to accept quasi-closed sets of roots (see [BT)]) instead of the closed
ones in the statement (of course, we must keep the condition from § 5 for
the symplectic case).

Theorem. For any intermediate subgroup F, T < F < G, there exists a
unique closed set of roots S C ® such that

G(S) < F < N(S).

It is easy to check that the fields K, |K| < 5, are exceptions for all the
cases and that the fields K, |K| < 11, are exceptions for the symplectic case
(see [Kol], [VD]). It is quite plausible though, that the theorem holds for all
non-symplectic cases whenever |K| > 7 (this conjecture has been formulated
in [V6], [V17); in [S4] G.M.Seitz posed the problem of the description of
overgroups of a split maximal torus for all fields K, |K| > 4).

In a classical paper [BT] by A.Borel and J.Tits this theorem was proven
for the case of an algebraically closed field K. Of course in [BT] only closed
connected subgroups of G were considered (without any restrictions on the
characteristics whatsoever) and it was proven that they are exhausted by
G(S) for quasi-closed sets of roots S C ®. But in fact a classical theorem
of Chevalley (see, for example [H1] or [Sp]) implies that for an algebraically
closed field any subgroup containing T is closed in the Zariski topology.

For the group GL(n, K) (i.e. an extended Chevalley group of type A, _,)
this theorem was proven in 1976 in a paper of Z.I.Borewicz [B3], see also
[BV1], [V2]. In [V4], [V8] other proofs of this (and somewhat stronger)
results were proposed, based on the calculations with Bruhat and Bruhat-
like decompositions.

The next important step was a paper by G.M.Seitz [S3] published in 1979,
where he proved that the standard description holds for a finite field K such
that char K # 2 and |K| > 13. The arguments in [S3] used the finiteness of
the ground field in a very essential way and they could not be generalized
to an infinite field. In fact such deep results as, say, theorems on 2-fusion
were used (this explains the restriction imposed on the characteristic).

In 1979-80 analogous results were obtained by the author and E.V.Dyb-
kova for extended Chevalley groups of types C; and D;, i.e. the general
symplectic group GSp(2!, K') and the general orthogonal groups GO(2!, K)
(see [VD], [V3]).

In the same paper [VD] the author and E.V.Dybkova proved the following
reduction result for the symplectic group. Let char K # 2 and |K| > 7.
Then the description of overgroups of a split maximal torus in Sp(2!, K)
is standard if and only if the description of overgroups of a split maximal
torus in SL(2, K) is standard.
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Analogous results for the extended Chevalley group of type B, i.e. for
the odd orthogonal groups GO(2! + 1, R) were obtained at the same time
but were not published until [V14]. Actually it was noted in [V14] that the
results of [V3] remain valid for the ordinary orthogonal groups SO(n, R). Of
course this is due to the fact that the groups SO(n, R) are already extended
by some (though not all in general) diagonal automorphisms.

The theorem for the adjoint groups of types E; and E; has been proven
by the author. A sketch of its proof is presented in [V11], [V12], [V20] (see
also [Val7] and references there).

A method which allowed us to prove the theorem for simply connected
groups of non-symplectic types over an infinite field was developed by the au-
thor in the period 1983-1989. A crucial point was that for all non-symplectic
groups one could reduce the problem to the eztended Chevalley groups of
smaller rank and for the extended groups the analogous problems had al-
ready been solved.

For the special linear group SL(n, K), n > 3, over an infinite field K this
proof has been published in the first part of [V6], while the subsequent parts
contained a proof of standardness under assumption |[K| > 7. For & = D,
standardness under this assumption is proven in [V18].

The case SL, was the last one to be solved and in § 9 we discuss the
proof for this case. This proof shows that analysis of abstract subgroups
over an infinite field may be quite a challenge even for such small groups as
SL(2, K).

§ 7. THE GrOUP GL,,

Here we prove the theorem from § 6 for adjoint groups of type A, _,.
Instead of working in PGL(n, K) itself we prefer to handle the correspond-
ing extended simply connected group GL(n,K). The natural proof for the
general linear group, obtained in [Bo3], [BV1], [V2], works for all fields K,
|K| > 7, (see also [V4], [V8], where this proof is transcribed in terms of
Bruhat decomposition). Here we reproduce this proof in a slightly modified
form.

Let G = GL(n, K) be the general linear group and D = D(n, K) be its
subgroup of diagonal matrices. It is easy to prove that if there is a counter-
example to the standard description of subgroups in G containing D, then
there is a primitive irreducible counter-example. Thus it remains only to
prove that if H is a primitive irreducible subgroup in G which contains D but
is not contained in N, then it coincides with G. By McLaughlin’s theorem it
suffices to prove that H contains a non-trivial elementary transvection (then
H contains a root subgroup and the normal subgroup in H, generated by it,
either coincides with SL(n, K), or is conjugate to Sp(n, K'), but no conjugate
of GSp(n, K) is normalized by D for n > 4).
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Thus it remains to prove that if z is a non-monomial matrix, then the sub-
group X = (D, z), generated by D and z contains an elementary transvec-
tion. The proof is based on the analysis of pseudo-reflections contained in
X. Recall that e is the identity matrix of degree n and e;;, 1 <4,j < n,
is a standard matrix unit, i.e. the matrix which has 1 in the position (3, j)
and zeros elsewhere. Let now d (¢) = e+ (¢ — 1)e,,, 1 <r <n,e € K*, be
an ‘elementary’ pseudo-reflection. Fix some r and consider the conjugate
y =y(e) = zd,(e)z~! of d.(¢) by z:

l+o4(e-1)8, oyle-1)p, ... a(e—1)8,
ay(e — 1)p, 1+ a,(e-1)3, ... a,(e —1)8,
y(e) = : : :
a,(e—-1)p, a,(e-1)8, veo 14 e,(e-1)8,

where o; = z;, are the entries of the r-th column of z, while §; = z}; are
the entries of the r-th row of the inverse matrix 2! = (z;).

Now fix some s, 1 < s < n. The s-th rows of matrices zd,.(¢)z~! and
zd, (n)z~! are proportional, apart from the diagonal entries. But the diago-
nal entries may be corrected by multiplication by some d (6). Indeed, choose
€,m € K* in such a way, that e — 1, n— 1, 1 + a,(e — 1)B,, 1 + a,(n — 1)B,,
€ —n, € —n~! are all distinct from zero (we can do this, since our field
contains at least 7 elements). Now set

1

6= (6 - 1)(’7 - 1)—1(1 + as(e - l)ﬂs)_l(l + aa(n - l)ﬂs)

A direct calculation shows that the product

2 = (2d,(e)2™)d,(6) (zd, (n)a ")

has the same s-th row as the identity matrix and thus lies in a proper
parabolic subgroup. Clearly, t;,(2;,) € X for all i # s. On the other side
z;,, 1 # s, differs from o;8, only by an invertible factor. Thus either we get
a nontrivial transvection in X, or (since we may vary both r and s) we have
z;,2,; = 0for all 7 # j, in which case z is monomial, a contradiction.

§ 8. THE GROUP SL,, 5,

In this section we prove the theorem from § 6 for the case of simply
connected Chevalley group G = SL(n,K) of type A,_,, n > 3, over an
infinite field K, see [V6], Part I. Actually the proof works also for large
finite fields of cardinality, say > 6n + 1. However considerable additional
efforts are needed to prove the result in natural generality, i.e. for all fields
K, |K| > 7 (see [V6], Parts I - IV).



246 VAVILOV: Intermediate subgroups in Chevalley groups

Let D = SD(n, K). Asin the case of the general linear group it is easy? to
reduce the proof to the analysis of a primitive irreducible counterexample.
In other words, as before we have only to prove that if z is a non-monomial
matrix, then the group X = (D, z) contains an elementary transvection.

Let d;;(€), 1 < i #j < n, ¢ € K* be a ‘two-dimensional semisimple
element’

d,-j(e) =e+(e—1e; + (e:'l - l)eJ-J- = d,-(e)dj(e"l).

From the point of view of Chevalley groups d,;(¢) is a semisimple root
element in SL(n,K). The ‘natural’ proof is based on the analysis of the
conjugates of such element in a counterexample.

However the analysis of an infinite (or a large finite) field is easier since
in this case G contains non-trivial homologies, i.e. matrices with n — 1 equal
eigenvalues. Namely, take any ¢ € K* such that ¢é® # 1. Then the matrix

d"(¢) = diag(e,... ,&,e' " e,... ) =ed (e EG

is noncentral and has n — 1 equal eigenvalues.

The conjugates of such matrices look — up to a scalar factor — exactly
like the conjugates of d,.(¢) € GL(n, K). We may again fixanr,1 <r <n,
and an € € K*, €” # 1 and consider the conjugate of d"(¢) by z:

y(E) = 2dr(€)2—l = 6(6'-]- + ai(e_n - l)ﬂg)a 1 S i7j7 S n,

where o; = z,, and §; = z.;, as before.

Fix some 1 < ¢ # j < n and take an index h # ¢, ;. We may assume that
ay, B, a;, B; # 0 (otherwise the problem is reduced to a proper parabolic
subgroup). Set

n=oe™ = 1)1+ oy(e™ - l)ﬂh)—lv

where invertibility of 1 + «,, (¢~ — 1), prohibits at most n further values
of €. Prohibiting not more than 2n further values of ¢ we may even assume,
that n # £1. Now we may consider the matrix

z =y(e)dyi(ny(e™!) € X.

2This ‘easy’ refers to large fields. For |K| > 7 the reduction uses de-
scription of overgroups of D(n, K) in GL(n, K), see [V21)]. This is a general
pattern: in the proofs for simply connected groups quite often we have to
use the corresponding results for adjoint groups.
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A straightforward calculation shows that z,; = 0 and

zii =" —n)ey(e™" - 1)8;

It is easy to check, that z,; = 0 implies that t;;(z;;2};) € X. feis not a
root of another polynomial of degree 2n, we can assume that 2}; # 0, and
thus t,;(a;$;) € X. Now the proof is completed exactly as in the case of

’fhe proof for the case |K| > 7 follows roughly the same lines, but there
are some further complications. For example, the group G does not in gen-
eral contain non-trivial homologies. As a result, it is impossible to conclude
directly from the fact that z;; = 0 for some z € X that z is monomial. This
is why one is forced to consider more complicated dependencies among the
entries of matrices from a counterexample (see [V6], III, IV).

The proofs of the theorem from § 6 for groups of other types are based
on roughly the same ideas as the ones reproduced in this section and the
preceding one. Of course, they are technically much more complicated. For
classical groups one can use their minimal modules. For the exceptional
ones we have to play with the Bruhat decomposition of semi-simple root
elements and the like, see [V17] and references there. A sketch of the proof
for the adjoint case may be found in [V11], [V12], [V20].

§ 9. THE GROUP SL,

For the group SL(2, K) the theorem from § 6 asserts that there are only
three proper intermediate subgroups between SD(2, K) and SL(2, K):

SL(2, K)

SB~(2,K) a > SB(2, K)

SD(2, K)



248 VAVILOV: Intermediate subgroups in Chevalley groups

where SB(2, K) and SB™(2, K) are the upper and the lower standard Borel
subgroups in SL(2, K'), while SN(2, K) is the monomial subgroup.

Of course for a finite field K we know all subgroups of SL(2, K), but for
an infinite field this result turned out to be incredibly tough. In [VD] the
author and E.V.Dybkova proved the theorem for SL(2, K) (and thus also
for Sp(2!, K)) under the additional assumption that |K*| > |[K*/K*?| and
observed that SN(2, K) was maximal in SL(2, K) whenever ~1 € K*2. In
[K1] O.King proved the maximality of SN(2, K) in full generality (compare
also [L5] where the maximality of SN(2, K) was proved under essentially
the same additional assumptions |K*/K*?| < co or ~1 € K*? as in [VD]).
In 1986 the author noticed that a slight modification of this proof allows
to prove the theorem for SL(2, K) (and thus also for Sp(2l, K')) under the
additional assumption that —1 € K*? (see [V10)], [V16]). Finally in [K2]
0.King was able to prove the theorem for SL(2, K) in full generality. Ac-
tually in this paper O.King describes overgroups of SD(2, K) also for fields
of characteristic 2 in terms of the K2-submodules in K.

Here we reproduce a proof of 0.King [K2]. Let F be a subgroup of
SL(2, K) which contains SD(2, K) but is not contained in the three sub-
groups above. Passing from F to a subgroup which is conjugate to F by a
diagonal matrix from GL(2, K), we may assume that F' contains a matrix

of the form
1 1 .
f—<a 1+a)’ a€c K"

Passing, if necessary, from F to (T, fTf~!), we may assume further that o
does not belong to a fixed finite subset of K*. We denote the root element

h,(€) simply by h(e):
hie) = (g 691) , €€K".

Now if char K # 2,3,5, O.King chooses an o # 0,1,£2,4+3,—4,5,—6
and forms the following product:

) A ()
{(55) #(5) 4 (553) o (552) #(3)
4(223) ata-9)n(3) 1 (2E2) 1m(3) £

Then a direct calculation shows that g,, = 0 while g,, is a nonzero poly-
nomial in o and thus equals zero only for finitely many values of a. This
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shows that some subgroup conjugate to F' by a diagonal matrix contains a
nontrivial elementary transvection. Thus F' = SL(2, K). For char K = 3,5
0.King constructs analogous (but shorter) formulae expressing transvec-
tions in terms of f and h(e). For charK = 2 both the proof and the
statement must be modified considerably, since for a nonperfect field of
characteristic 2 there may be infinitely many intermediate subgroups.

§ 10. PRONORMAL SUBGROUPS

Now we know what the analogue of the classification theorem for over-
groups of T is. But what is the analogue of the conjugacy theorem? Before
T was abnormal in B and B was abnormal in G. But T does not coincide
with its normalizer N in G, so it cannot be abnormal.

Definition. A subgroup T of a group G is called pronormal in G if for
any r € G there exists y € (T, zTz™') such that yTy™' = 2Tz~".

In other words, this means that any two subgroups conjugate to T in G
are conjugate already in the subgroup they generate.

Let N = N;(T) be the normalizer of T in G. It is easy to see that saying
that T is pronormal in G is equivalent to saying that

i) Ng(H) = HNy(H) for any subgroup H containing T

il) any two conjugate subgroups H and F containing T are conjugate by
an element of N.

Actually both conditions may be conveniently fused in the following con-
dition: for every two conjugate subgroups T < F,H < G any =z € G such
that xFz~! = H may be expressed in the form z = wy for appropriate
w€ N andy € F.

Now we can state the analogue of conjugacy theorem. We keep the same
assumptions on K as in § 6.

Theorem. T is pronormal in G,

The first examples of pronormal subgroups which one would think, are,
of course,

— Sylow subgroups of (normal subgroups in) finite groups,

— Hall subgroups of soluble (normal subgroups in) finite groups,

- U in G (see [S1]),

— maximal tori of algebraic groups (see [H1], [Sp]).

More generally a weakly closed subgroup of a Sylow subgroup T of G is
pronormal in G, etc,

Pronormality is a common generalization of normality and abnormality.
The normalizer of a pronormal subgroup is abnormal. In particular this
theorem implies that N is abnormal in G. However, it is not, generally
speaking, a minimal abnormal subgroup.
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It turns out that pronormality plays a very important role in the descrip-
tion of the lattice of subgroups of an abstract group [B6]. In fact for any
pronormal subgroup T in G the lattice of intermediate subgroups looks as
follows. It is a disjoint union

£(1,6) = | c(F No(FY),

taken over all subgroups F' generated by some conjugates of T' (either in G
or in F itself, in this case this does not matter, see § 14 for the details).
Intuitively the groups F' are ‘connected’ with respect to T', in [B6] they
are called T-complete. The normal closure T# of T in any intermediate
subgroup H € L(T,G) coincides with one of the groups F above, while the
normalizer N;(H) is contained in Ng(TH).

Thus to describe overgroups of a pronormal subgroup, one has to classify
the T-complete subgroups F' and to calculate the factor-groups Ng(T')/T.

However, as we shall see later, there are many further subgroups, for
which £(T,G) may be decomposed in this way. Among these subgroups
pronormal ones are characterized by the fact that they have large normal-
izers, see properties i) and ii) above. In fact, for a pronormal subgroup F
the following two characteristic properties hold:

— every sandwich L(F, Ng(F)) is isomorphic to an interval inside £(T, N)
(in other words N (F)/F is a section of N/T);

— two sandwiches L(F}, Ng(F,)) and L(F,, Ng(F,)) are conjugate if and
only if they are conjugate by an element of N: F| ~5 F, if and only if
F|, ~y F,.

In particular, for a pronormal subgroup the calculation of all factor-
groups Ng(F)/F is reduced to the calculation of the ‘Weyl group’ N/T.

Thus, there are good chances for a nice description of overgroups of
Sylow subgroup S,(G) in a finite group G. This is essentially done in [A5]
for sporadic groups.

Problem. Describe the overgroups of Sylow subgroups in finite groups of
Lie type.

As was pointed out by the referee, for p = 2 this problem has been
partially solved. In fact [LSal] and [Ka4] determine the mazimal overgroups
of the Sylow 2-subgroups. This gives a good start for a complete solution
of the problem in the case of p = 2.

The following question is purely speculative, since one cannot really ex-
pect a reasonable answer. However even new examples of pronormal sub-
groups could be of great value for understanding the subgroup structure of
finite groups.

Problem. Classify pronormal subgroups of finite groups of Lie type.
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§ 11. GENERALIZATIONS TO RINGS

In this section we mention how the results of the previous sections may
be generalized to rings. Of course here the answers should take into account
the structure of the ideals of the ground ring.

Definition. A net of ideals in R of type ® is a family o = (0,), ¢ € ¥,
of ideals o, in R such that 6,05 C 0,5 whenever a,3 € ® are such that
a+fed.

Now we can assign to a net ¢ of type ® in R subgroups E(c), G(o) and
N(o) in G(®, R) by the same formulae, as in § 3, for a closed set of roots
S. Namely, we set

E(o) = (ra(ﬁ), acd, € aa>.

Now we can define G(o) as T - E(c) and N(o) as the normalizer of G(o) in
G. Since K; of a ring is non-trivial, these are not the “correct” definitions
of G(o) and N(o), but they suffice for the instances in which we use them.
In fact G(o) should be defined by certain linear congruences on entries of
matrices describing the action of elements from G on a minimal module, see
§ 13 for the case of the general linéar group.

In the next two sections we can avoid this problem by defining N(o)
as Ng(E(0c)). In fact a considerable part of real work consists in proving
that the correctly defined N(o) actually does coincide with the normalizer
of E(c) for the cases we are interested in. This result is, for instance, a
very wide generalization of the normality theorem of Suslin stating that the
elementary subgroup E(n, R) is normal in GL(n, R), when R is commutative
and n > 3. We do not discuss these aspects of the theory here, see [BV3],
[V16] for the details and further references.

Nets of type A; were introduced by N.S.Romanovskii [Ro)] in a special case
and by Z.I.Borewicz in general [Bol] — [Bo5], [BV1] ~ [BV3]. Corresponding
subgroups in GL,,, SL,,, Sp,,, were studied in detail by Z.I. Borewicz and his
students (we cannot reproduce a complete bibliography here, consult [Ne]
for the early history of these ideas and [22], [VD], [V14], [V15], [V18] for
further references). For arbitrary ®, nets were defined by K.Suzuki [Sz1],
[Sz2] in a special case and by the author in general [V1], [V5]. These papers
dealt with rings close to fields (like semilocal ones, see below), where the
above definitions of G(o) and N(o) are satisfactory. For arbitrary rings the
“correct” groups were defined in [VP].

With these definitions we can generalize the contents of the previous
sections to some classes of rings. In fact £L(T, B) can be described for an
almost arbitrary ring R — the only requirement is that R should have enough
units: R should be additively generated by R* (by R*? in the symplectic
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case) and the ideal generated by e~1 (or €2—1, e3—1), where ¢ € R*, should
coincide with R. Under these conditions every subgroup in B containing T
coincides with G(o) for an appropriate net o and T is pronormal in B (see
[B1], (B2}, [V1}).

It is somewhat more complicated with £(B,G). In fact there is no ana-
logue of the Bruhat decomposition for rings other then direct sums of (skew-
Yfields®. For rings the lattice £(B,G) was studied in [Ro], [B1], [B2], [Sz1],
[Sz2], [V1], and several further papers (see [V5] for a complete bibliogra-
phy). In these papers £(D, G) was completely described when R is a “zero-
dimensional” ring satisfying the restrictions above. Not to go into details,
we note that a safe example of zero-dimensional rings are semilocal ones.

Recall that a ring R is called semilocal if its factor-ring modulo the
Jacobson radical J is artinian. For a commutative ring this is equivalent to
saying that R has finitely many maximal ideals, or that R/J = K, ®...® K,
is a direct sum of finitely many fields (in particular R is local if t = 1, i.e.
if R/J = K is a field). For semilocal rings the conditions imposed on their
units amount simply to saying that K; # F,, I, F,, etc. For such rings again
all intermediate subgroups H, B < H < G, are of the form G(o) and B is
abnormal in G. (This is not the case in general however, even for such very
nice rings as Hasse domains the answer is much more complicated).

These results applied to all types. As for the lattice £(T, G) so far only
the adjoint (or extended) classical groups were considered. Let R again be
semilocal. Then only the small direct summands of R/J may cause trouble.
If all K; are distinct from F,, F;, F, and F; (and charK # 2if & = B,
or C;), then for any intermediate subgroup H, T < H < G, there exists a
unique net o of ideals in R of type ® such that G(¢) < H < N(o), see [B3],
[BV1], [V2], [V3], [VD], [V14]. Moreover if R is local then T is pronormal
in G (for a general semilocal ring T need not be pronormal - it is only
paranormal, compare § 14), see [V9], [VD)], [V14]. For the general linear
group over non-commautative semilocal rings one has to prohibit one more
direct summand of R/J, namely the ring M(2,F,) of matrices of degree 2
over the field of two elements.

There are presently no approaches to the description of overgroups of
T for local rings, not only for the exceptional groups, but even for such
innocent looking creatures as SL,. The only case for which it was possible
to go through for SL, ., are the so called uniserial rings, for which ideals
are linearly ordered by inclusion [Ha). Here we state the part of the result
which works for the adjoint classical groups and does not work in other

3This applies to groups of finite degree. For the stable elementary group
E(A) = imE(n,A) there is an analogue of Bruhat decomposition which

holds for any ring A — Sharpe’s decomposition.
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situations.

Let R be any commutative ring, J be its Jacobson radical. Consider the
group B generated by B and all z_(¢), where o € 37, £ € J. In other
words Bj is precisely the group G(r) for the net 7 defined by 7, = R if
a € ®* and 7, = J otherwise. Then for the adjoint classical groups one
can describe the lattice £(T, B;) for almost arbitrary commutative rings R.
Namely R should have enough units in the same sense as in the description
of L(T, B) above. Assume that R is additively generated by R* and that
there exist such ¢,7 € R* that e — 1, p—1, e —n,en —1 € R*. Then
every intermediate subgroup H, T < H < B, is again of the form G(o) for
an appropriate o and T is abnormal in B;. This is precisely what is still
lacking for other groups, including SL,, ;.

The reason why the description of overgroups of T in G works only for
zero-dimensional rings is that T' consists entirely of semisimple elements.
Of course, B has lots of unipotent elements, but their geometry is very poor.
Semisimple elements may be very upsetting even for fields. Unipotents are
much nicer and behave in a more predictable way. In the next sections
we shall see in particular that when D has enough unipotents it is almost
always possible to describe £(D, G) for arbitrary commutative rings.

Problem. Describe L(T,G) for all Chevalley groups when R is a semilocal
ring.

§ 12. OVERGROUPS OF SUBSYSTEM SUBGROUPS

In this section we introduce another pattern in the distribution of inter-
mediate subgroups. Namely, we study the overgroups of regularly embedded
semisimple subgroups in the sense of E.B.Dynkin. Such subgroups were
christened subsystem subgroups by M.W.Liebeck and G.M.Seitz.

Namely let A C ® be an embedding of root systems. This embedding
defines a regular embedding of Chevalley groups G(A, R) < G(®, R) over
any commutative ring R with 1. We are interested in the description of
overgroups of E(A, R) in G(®, R). Of course to get such a description one
has to assume something about A (and possibly also about R): the case
A = { is upsetting.

The assumption which seems reasonable in all cases is that AL = @,
i.e. that there are no roots in & orthogonal to all roots in A. However for
commutative rings one usually needs stronger assumptions.

Now we state known results for the classical groups. First of all recall
that the root subsystems of classical systems are as follows:

¢=AI: A=Ak1+"'+Akr’
¢=BI: A=Ak1+"'+Akr+Dl1+"'+DI.-1+BI,’
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Q___Cl: A=Ak1+...+Ak'+C,1+...+C,',
&=D, A=Ay +...+A, +D, +...+D,,

Here p+g=1,p=(k;+1)+...+(k,+1),g=1;+...+1,,and k,,... ,k,. 2 0,
l,,...,1, >0 (see [Dn], table 9). It is assumed here that A, = B, = D, = {
is the empty root system. Set n; = 2I; if the corresponding summand is C,,
or D, and n; =2/, +1ifit is B;.

Then the corresponding groups E(A, R) are isomorphic to one of the
following groups: to the group

E(k;+1,R)®...®E(k. +1,R)
in the case ® = A; to the group
E(k, +1,R)®... ®E(k, + 1, R) & Epin(n,,R) ® ... ® Epin(n,, R)
in the cases & = B; and ® = D;; and, finally, to the group
Ek, +1,R)®...®E(k, +1,R)®Ep(2],,R)®... ® Ep(2l,, R)

in the case & = C;. Here E(n,R) = E(A,_,, R) is the elementary sub-
group of SL(n, R) generated by all elementary transvections (see [HO)),
while Epin(2! + 1, R) = E(B,, R), Epin(2l, R) = E(D;, R), and Ep(2l,R) =
E(C,, R) are analogous subgroups in Spin(n, R) and Sp(2l, R) respectively.
For the orthogonal group SO(n, R) the elementary subgroups Epin(n, R)
should be replaced by EO(n, R).

Now we are ready to state the results about overgroups of subsystem
subgroups in the classical groups. Assume that & = A}, B;, G, or D; and that
R is a commutative ring, such that 2 € R* if ® has roots of different length.
Assume further that A is a subsystem in ® such that k,,... k., 0;,... 1,
of its irreducible summands are at least 2. In the orthogonal case assume
moreover that all k,... ,k, are at least 4.

Theorem. For any subgroup H in G(®, R) containing E(A, R) there exists
¢ unique net o of ideals in R such that

E(0) < H < N(o).

In particular, for fields this theorem says that there exists a unique closed
set of roots S C @ such that E(S) < H < N(S). Of course E(A,K)
contains root subgroups and thus for fields this theorem may be deduced
from the results of J.Mclaughlin, B.S.Stark, W.Kantor, Li Shang Zhi and
F.Timmesfeld describing irreducible subgroups of classical groups generated
by root subgroups (see [Kal)], [Ka2], [Til] - [Ti4] and references there).
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However a much easier proof than that works for all commutative rings.
We sketch this proof for the case ® = A, in the next section.

Now we discuss the bound on k;, I; in the theorem above, limiting our-
selves to the case & = A; (analogous remarks apply to other series as well).
Observe that the theorem is not true any more if there are at least two sum-
mands of rank < 1. Clearly, the case when we have at least two summands
of rank 0 is intractable, so we assume that k; > 1 for all i. Consider, for ex-
ample the subsystem A = 2A, in & = A,. Then clearly E(2,K) ® E(2,K)
is contained in Sp(4, K) which does not have the form predicted by the
theorem.

For fields Sp(2l, K) is the only primitive irreducible counterexample up
to conjugacy, but it is quite an exercise to explicitly list all the possibilities
for reducible subgroups containing E(A, K) (see [Ko5]). Even worse, one
immediately discovers that description of intermediate subgroups in our
sense and their description up to conjugacy is not quite the same thing. For
example, there exist infinite parametric families of intermediate subgroups
conjugate to Ep(2l, K) (unlike the case of k; > 2, when there are only
finitely many E(A, K)-complete intermediate subgroups).

On the other hand for rings the case when the irreducible summands of
A have rank 1 is essentially intractable. In fact the theorem above would
imply a description of subgroups in G(A, R) normalized by E(A, R) (com-
pare [Go], [Sv]). As is well known, there is no hope to describe the normal
structure of the groups GL(2, R) or SL(2, R) over general commutative rings
(compare [W]). Even for such very nice rings as semilocal ones, or Hasse
domains with infinite multiplicative groups, a complete description of nor-
mal subgroups was obtained only quite recently and involves much more
complicated structures, than ideals [CK].

The 7-dimensional representation of the Chevalley group of type G, and
the 8-dimensional representation of the Chevalley group of type B, are
responsible for the stronger restrictions on the ranks of the irreducible sum-
mands of A in the orthogonal case. In fact, the embeddings A, C G, and
A,; C B, furnish counter-examples to the conclusion of the theorem above
with the ranks of irreducible summands equal to two or to three.

There is no doubt that results analogous to the theorem above hold
also for large subsystem subgroups of exceptional groups and that all the
necessary tools are contained in [V19)].

§ 13. THE GROUP GL, OVER COMMUTATIVE RINGS.

Here, in the example of the general linear group GL(n, R), we explain
the correct definition of G(o) and N(o) (see [B1] — [B5], [BV1] — [BV3])
and show how the proof of the preceding theorem works. The proof we
reproduce below is a simplified version of the proof from [BV3].
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Let A be an arbitrary associative ring with 1. A square array ¢ = (0;;),
1 < 4,5 < n, of two-sided ideals o;; in A is called a net of ideals in A of
degree n if 0,,0,; C o,. for all values of the indices ¢, j,r. A net o is called
a D-net if 6;; = A for all i. Clearly D-nets of degree n are precisely the nets
of type A,,_, defined in § 11.

As in § 11 we can associate with o the elementary net subgroup E(o)
generated by all elementary transvections ¢;;({) = e + {e;;, where 1 <4 #
j S n, { € aij'

For a given net ¢ we denote by M(o) the corresponding subring in the
full matrix ring M(n, A), consisting of all matrices z = (z;;) congruent to 0
modulo o:

M(o) = {95 = (z;;) € M(n,A) | z;; €04, 1 <4,5 < n}.

Then e+ M(o) is a multiplicative system. The largest subgroup G(o) of the
general linear group G = GL(n, A), contained in e + M(o) is called the net
subgroup, corresponding to ¢ and is denoted by G(¢). For a commutative
ring R one has G(o) = G N (e + M(0)).

As before N(o) is the normalizer of G(¢) in G. In many important
situations, in particular for the nets appearing in the theorem above, N (o)
consists of the matrices z € G such that z;.0,,7,; Co,; for all ¢,j,r,s.

Let v be an equivalence relation on the index set {1,...,n}. We can
associate with » a D-net [v] by setting [v];; = A if ij and [v];; = 0
otherwise. Then the corresponding group E(v) = E([v]) is exactly one
of the elementary subsystem subgroups E(A) considered in the preceding
section. The condition on ranks of irreducible summands of A amounts to
saying that all equivalence classes of v contain at least three elements.

Now assume that R is commutative and H > E(v). For ¢ # j denote by
o;; the set of all { € R such that ¢,;(£) € H. Set, moreover, o;; = R. Clearly
o is the largest D-net of ideals such that E(c) < H. We have to prove that
H < N(o). This amounts to verifying the conditions z,,.0,,25; C o,; for all
rz€ H and all ¢,5,r,8,r # s, i j.

Take any pair of indices r # s and any £ € o,., and consider the following
transvection y = zt,,(£)z~' € H. We have to prove that all these transvec-
tions belong to E(o). Fix an index j and take two indices p, ¢ equivalent to
J and such that j,p, ¢ are pairwise distinct. Consider the matrix

z= ythp(aqr)thq(—apr)y_l € H.

Explicit calculations using the commutativity of R show that z;, =’ §;;
for all b # p,q, while z;, = §,, + b;;a,, and z;, = §;; + b;;a,,. Another
commutation with matrices from E(v) shows that y, jTpr €0y forallp~j,

pP#J.
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These inclusions hold for all transvections of the form y = zt_,(¢)z7?,
z € H. But this then readily implies that all these transvections belong
to E(s). Indeed consider another transvection u = yt,,(1)y~* € H. The
inclusions above applied to u instead of y show that u,,y;; € 0;, = 0;;. But
Uiy = Y;pYpp, Where yp, =1 -z, €z, , so that u;, = y;;( mod o;;). Thus
Yi;9;; € 0i;- Applying this last inclusion to u we get u; u,, € o;, = 0,
But u;,y,, = y;;( mod o;;). Thus, finally, y;; € o;; for all 4, ;.

Now to prove polynormality of E(v) one has to prove that E(o) is normal
in N (o) and that all conjugates of E(v) contained in N(o) in fact lie already
in E(o). These are relatively deep facts. For example, they contain Suslin’s
normality theorem as a very special case, see [BV3] for details.

Essentially the same proofs work for other classical cases as well (see
[V10], [V15], [V16] for details and further references). In fact this result is a
very wide generalization of the description of normal subgroups in classical
groups over commutative rings (see references in [V19)]).

J'.

§ 14. PARANORMAL AND POLYNORMAL SUBGROUPS

We have seen in § 12 that for the subsystem subgroups the lattice of
intermediate subgroups admits the same nice description as for the split
maximal tori. However the subsystem subgroups are not pronormal in gen-
eral, simply because there normalizer might be too small.

Take for example the subgroup

D =E(m,K) ® E(m,K) ® E(2m,K) < GL(4m, K).

Then clearly one cannot present all the matrices from the normalizer of H =
E(2m,K) ® E(2m, K) > D in the form hw, where h € H and w € Ng(D).
It turns out though, that the subsystem subgroups satisfy a weaker prop-
erty, which guarantees the standard description of the intermediate sub-
groups. We introduce some notation first. Let D < GG and denote by

Qg(D) = {zDz"!, z € G}

the set of all conjugates of D in G.

Definition. A subgroup F, D < F < G, is called D-complete if it is
generated by subgroups which are conjugate to D in F

F =D = (X e Qp(D)).

The following very important notion was introduced by Z.1.Borewicz and
0.N.Macedonska in [BM].
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Definition. A subgroup D of G is called paranormal if for any 2z € G

one has
D{D:eDz") (D,zDz™?).

In other words, a subgroup D is paranormal if for any = € G the sub-
group H = (D,zDz™!) is D-complete. Clearly it follows that all subgroups
generated by some conjugates of D in G are D-complete. It is obvious that
a pronormal subgroup is paranormal, but as we have seen the converse is
not true.

Theorem. Under the assumptions of the above theorems the elementary
subsystem subgroup E(A, R) is paranormal in G(®, K).

Other remarkable examples of paranormal subgroups, which are not, gen-
erally speaking, pronormal, are

- maximal tori in finite Chevalley groups, [S6];

- diagonal subgroups (split maximal tori) in classical groups over semilo-
cal rings, [BV1], [V3], [VD], [V14].

Paranormal subgroups exhibit the same behaviour of intermediate sub-
groups as pronormal ones, apart from normalizers and conjugacy. Indeed,
for any paranormal subgroup D in G the lattice of intermediate subgroups
is a disjoint union

£(D,6) = L NG(F)),  F=(X €9(D), X <F).

taken over all subgroups F generated by some conjugates of D in G. As
in the case of pronormal subgroups the normal closure D¥ of D in any
intermediate subgroup H € £(D,(G) coincides with one of the groups F
above, while the normalizer Ng(H) is contained in Ng(D¥).

In the paper [BM] another, a still wider, generalization of pronormal
subgroups is introduced.

Definition. A subgroup D of G is called polynormal if for any subgroup
H < G one has
DpP" — pH.

Immediately from the definition it follows that for any polynormal sub-
group D in G the lattice of intermediate subgroups is a disjoint union

]
L(D,G)=|J L(F,Ng(F)), F=DF,
taken over all D-complete subgroups F. The sandwiches for the polynormal

subgroups are a priori larger, than for the paranormal ones. Moreover it is
possible that one subgroup, generated by some conjugates of D lies between
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another such subgroup and the normalizer of the latter in G. Thisis counter-
intuitive and cannot arise for nice subgroups, like, say, groups of points of
connected algebraic groups over large fields. This is why the author feels
that this further generalization is less useful than the notion of a paranormal
subgroup.

To the contrary paranormal subgroups arise quite naturally from the
pronormal ones. Namely, if T is a pronormal subgroup in G, then a T-
complete subgroup D may have small normalizer and is not necessarily
pronormal in G, while on the other hand it is ¢lways paranormal.

Once more to describe overgroups of a paranormal or a polynormal sub-
group D, one has to classify the D-complete subgroups F' and to calculate
the factor-groups Ng(F)/F. However, unlike for the case of pronormal
subgroups, the calculation of these factors is in no way reduced to the cal-
culation of N/D. This is precisely why G.Seitz has to change his torus when
calculating the normalizer of an intermediate subgroup [S6].

§ 15. FIELD EXTENSION SUBGROUPS

In this section we start to discuss the groups related to the Aschbacher
class Cy. Let L be an extension of the ground field K of degree r. Then a
vector space V' of dimension m over L may be considered as a vector space
of dimension n = mr over K. Every L-linear endomorphism of the space
is K-linear. Picking up a K-base in V we get an embedding GL(m, L) <
GL(n, K) (compare the next section for a more detailed description of the
case m = 1).

One can define analogous embeddings for other groups of Lie type; some-
times there are several different patterns. For example, G = Sp(2n, K) has
not only subgroups Sp(2m, L), where as above L/K is an extension of de-
gree r = n/m, but also subgroups U(n, L), where L is a quadratic extension
of K. For the finite classical groups one can find complete lists of all such
embeddings in [Al], [KL2). However the main goal of these works is the
search for maximal subgroups. This is why they concentrate on the case
when L/K is an extension of prime degree.

In this section we will be interested in the case when m > 2, i.e. when
GL(m, L) contains unipotent elements. The image of a transvection from
GL(m, L) is a quadratic unipotent element. The case m = 1 is very different
and will be discussed in the next three sections.

We are interested in subgroups of GL(n,K) containing SL(m, L). For
m > 3 the answer is quite uniform and may be stated as follows.

Theorem. Let L/K be any field extension of degree r, m > 3, n = mr.
Then for any subgroup SL(m,L) < H < G = GL(n, K) there exists a unique
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intermediate subfield K < E <L, [L: E] =d such that
SL(md, E) < H < Ng(SL(md, E)).

This is a corollary from a result of Li Shang Zhi [L4]. In the case m = 2,
|K| # F,, the description is similar, but there is another series of complete
intermediate subgroups, namely the groups Sp(2d, E) for all intermediate
subfields K < E < L, [L : E] = d. In the exceptional case of the Sp(4,F,)
two further examples arise.

Li Shang Zhi has proven analogous results for overgroups of Sp(m, L)
in GL(n, K). Nothing changes as compared with the case of overgroups of
SL(m, L), except, of course, that now the groups Sp(md, E) always appear
as complete intermediate subgroups, and not just for m = 2. He also
announced analogous results for overgroups of Q(m, L).

For the finite case analogous results were obtained independently by
R.W.Dye, see [D1] - [D3] and references there. Basically he was inter-
ested only in the extensions of prime degree. On the other hand R.W.Dye
considered also the case of tori, which Li Shang Zhi had to exclude for infi-
nite fields (for a very good reason, as we shall see in the following sections).
In the language of these works the field extension subgroups are stabilizers
of spreads. The method of proof is also geometric.

It seems plausible that using ideas analogous to those described in § 11
and § 13 one can obtain analogous results for commutative rings. For the
fields of char # 2 the answer follows also from the theory of quadratic pairs
and its infinite analogue developed by F.Timmesfeld.

§ 16. MAXIMAL TORI

In this section we describe what maximal tori look like for the case of
the general linear group and briefly outline the current situation concerning
description of their overgroups. In principle what we call a maximal torus
is the group of K-points of a maximal torus in the corresponding algebraic
group.

Maximal tori are extremely important subgroups, especially in the finite
case. They play a crucial role both in the structure theory (since they
control conjugacy classes of semisimple elements) and in the representation
theory. One may find detailed information concerning tori in the finite case
in [88], [C2], [C3], [S5], [S6], [Kn].

The situation over infinite fields is more complicated. Our description
below is utterly naive, for example we do not worry about separability.
One can find a complete cohomological classification of maximal tori in the
classical groups over infinite fields in the paper [Km] by K.Kariyama.

First consider the case n = 1 in the construction of a field extension
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subgroup from the preceding section. In other words we consider inclusion
L* < GL(n,K), [L:K]=n.

In fact, let w,,... ,w, be a base of L over K. Then for any o € L. One has

n

an = Za,-jwi, O‘ij € K, 1 S] S n.

=1
Now the above embedding is described by the correspondence & — (a;;).
Problem. Describe overgroups of L* in GL(n, K).

As we shall soon see this problem is extremely difficult in general, and
provides examples for description of subgroups which is much more compli-
cated than anything we encountered so far. However to make it still more
difficult we may combine it with the Aschbacher class C,.

Namely, consider a partition n =n; +...+n,. Let L,,... ,L, be exten-
sions of K of degrees n,,... ,n, respectively. Then one can consider

T=L!®...0L; <GL(n,K).

Such a subgroup T is a maximal torus in GL(n, K).
Problem. Describe overgroups of L1 @ ... ® L} in GL(n, K).

When t = n all the fields L; coincide with K and we get precisely the
problem considered in § 6.

Roughly speaking the situation with classification of overgroups of max-
imal tori is as follows. Here G is a simple K-defined algebraic group over
a field K and T is an arbitrary K-defined maximal torus. We consider the
lattice L(Ty,Gg) of subgroups lying between the groups of K points of
T and G. For algebraically closed fields all tori are split and the results
described in § 6 apply. The situation for the finite case will be outlined in
the next section.

For the field R of real numbers all subgroups containing a maximal torus
are closed in the real topology [Dj], [P]- In particular, there are only finitely
many intermediate subgroups and they are easily classified using the corre-
sponding results for Lie algebras.

For some special tori over local fields the problem was considered by
S.L.Krupetskii, see [Krl] — [Kr3] and references in [V17]. The qualitative
answer for the general case was obtained by V.P.Platonov [P]. Let K be a
local field with valuation v. Then any intermediate subgroup H is an open
(in v-adic topology) subgroup in the group (H), of K-points of its closure
(in Zariski topology). This reduces the explicit classification to Bruhat-Tits
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theory. In particular there are not more than countably many intermediate
subgroups.

For a global field K only the case of a cyclic maximal torus in one of
the groups GL,, or SL, has been considered so far by V.A.Koibaev and
V.P.Platonov. In particular, Chebotarev’s density theorem implies that
there are uncountably many intermediate subgroups.

For arbitrary fields only the case of non-split tori in GL, has been con-
sidered by V.A.Koibaev, Z.1.Borewicz and others; see § 18 below for a de-
scription of this result.

§ 17. OVERGROUPS OF MAXIMAL TORI: FINITE CASE

For a finite ground field there is an almost exhaustive description of sub-
groups in Chevalley groups which contain a maximal torus. This remarkable
result is due to G.M.Seitz [S6]. The standing assumption in this section is
that K = F, be a finite field, char K" # 2,3, ¢ > 13. Seitz’ results apply to
all finite groups of Lie type, but for simplicity we state them only for the
groups of normal types.

Let G = G(®,K) be a Chevalley group of type ® over the algebraic
closure K of a finite field K = F,. Recall that the standard Frobenius
endomorphism ¢ = o, of GL(n, K) is obtained by raising the matrix entries
to the g-th power, o : (2;;) = (2};). A standard Frobenius endomorphism
of G is the mapping ¢ : G — G induced by o, under some embedding
i: G — GL(n, K), see [SS], [C3].

A maximal torus T in a finite Chevalley group G = G(®, K) has the form
T =TNG, where T is a o-invariant maximal torus. Conjugacy classes of
maximal tori correspond to the conjugacy classes of the Weyl group W(®),
see [C2), [C3], [SS]. Let further X,, @ € @, be the corresponding root
subgroups. Since T is o-invariant, these subgroups are permuted by o.

Let A = {X,,...,X,} be a g-orbit of root subgroups. We consider the
span X = X(A) = (X,,...,X,). The groups X = OF(X") are called
T-root subgroups by G.M.Seitz. They play the same role in the description
of overgroups of T as the usual root subgroup do in the description of
overgroups of a split torus.

Every T-root subgroup is either unipotent, or a group of Lie type over
a certain extension of the ground field. If T is split, then all the T-root
subgroups are unipotent; when T is minisotropic, all of them are semisimple.
In general there are T-root subgroups of both types.

Now let S be a set of T-root subgroups which is closed in the following
sense: if X,Y,Z are three T-root subgroups such that X,Y € S and Z <
(X,Y), then Z € S. Let G(T,S) be the group generated by T and all
X € S. Let further N(T,S) be the normalizer of G(T,S) in G. Then the
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result of G.M.Seitz may be stated as follows.

Theorem. Let T be an arbitrary mazimal torus in G = G(®,K). Then
for any subgroup H of G that contains T there exists a unique closed set S
of T-root subgroups such that

G(T,S) < H < N(T, S).

Actually Seitz has shown that the group G(T, S) appearing in the theo-
rem is is exactly the subgroup T generated by conjugates of T' contained in
H. This, plus standard arguments about the normalizers N(T,.S), amounts
to the following result.

Theorem. T is a paranormal subgroup of G.

Another important result of [S6] asserts that the notion of a T-complete
subgroup does not depend on the choice of a maximal torus T'.

Theorem. If H contains two mazimal tors Ty and T,, then T, = T,7.

The proof in [S6] uses the Classification. In [S5], [Kn] one can find an
explicit description of the maximal tori and T-root subgroups for the finite
cases. Independently of the work of G.M.Seitz only the overgroups of Singer
cycles in the classical groups (and their large subgroups) have been studied,
see [Ka2], [He], [D1] - [D3], [De], [Wa].

§ 18. OVERGROUPS OF MAXIMAL TORI: GL,

In this section we describe the work of V.A. Koibaev, Z.1. Borewicz and
others on the subgroups of the group G = GL(2,K) over an arbitrary
field K which contain a maximal torus, see [Ko7], [BKH], [BK2], [Ko8).
The contents of this section show that for infinite fields the structure of
the lattice of intermediate subgroups may be very different from the finite
patterns.

Assume that K is an infinite field such that char K # 2 and L/K is a
quadratic extension of K. We may assume that L = K(v/d), d € K \ K2.
Then the corresponding maximal torus in G has the form

T=T(d)={<" yzd), z,y € K, (a:,y);é(0,0)}.

y

We are interested in the lattice £(T,G). For a split maximal torus we
were practically done once we could prove that our intermediate subgroup H
contains an elementary transvection. Here the situation is strictly opposite:
at this point the real work just starts.
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Theorem. Let T < H < G. Then either H < Ng(T), or H contains an
elementary transvection.

We can associate with any intermediate subgroup H an additive subgroup

A C Kt setting:
A=A(H)={a€K| (i (1’) GH}.

This subgroup is called the module of transvections of the subgroup H.
Further we consider the corresponding ring of multipliers

R=R(H)={) €K, MAC 4}.

It is clear that R is a ring and A is an R-module.

The first natural question is which R and A do arise? It turns out that
there is some absolute ring of multipliers R, and a subring R < K has the
form R(H) if and only if it contains R;. This R, may be defined as follows:
it is the subring in K generated by all elements of the form

z € K.

22 -d’

For example, for K = Q this R, has the form R, = P,"'Z, where P, = P,

P={poddprime, G) =1},

if d # 1( mod 8) and Py = PU {2} if d =1( mod 8).

At this point the following technical condition is imposed on the torus T
we assume that 2 € Ry*. Under this condition the lattice of intermediate
subgroups is completely described in [Ko8] (see also [BK2] for some prelim-
inary results and [Ko7], [BKH] for a complete analysis of the case K = Q).
We reproduce this description below. Without this condition the answer is
much more complicated.

Theorem. For a subring R C K and an R-submodule A C K to have the
form R = R(H), A= A(H) for some intermediate subgroup H, T < H <
G, it is necessary and sufficient that R D R, and dA? C R.

For the field K = Q this result holds also without assumption 2 € R,.
Thus, in particular, for any d there are R, intermediate subgroups (as com-
pared to only five of them for the case of a split maximal torus). Clearly,
only three of these subgroups (the torus T itself, its normalizer and the
whole group G) are algebraic, all others are Zariski dense in G.

The next question is to describe all intermediate subgroups with given R
and A. Denote this sublattice of L(T,G) by Lg 4 = L 4(T,G) It turns out
that there exists a unique smallest subgroup and a unique largest subgroup
in ‘CR,A‘
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Theorem. The smallest subgroup in Ly 4 is the group

(a9 eenyen(s 00).

where the subgroup Q,(A) < R* is defined as follows:

(da+ ) —d
QO(A)=<W’2€K’QEA .
Now consider the ideal @ in R generated by the elements
dz
z-a &K

and the set
S={s€R, Qs CdA}.

Clearly S is an ideal in R such that QA C S C A.

Theorem. The largest subgroup in Lp 4 is the group

=1} o)
where the subgroup Q°(A) < R* is defined as follows:
Q%4)={6e R, *#-1€S5}.
Now we can explicitly describe the lattice Lp 4.

Theorem. Every subgroup H from Lp 4 has the form

1 0
H=T (A A) ’
where A is a subgroup of R* such that Qy(A) < A < Q°(A) and for all
z € K and § € A one has
1+0—2$2—_J(0 -1 eA.

The final theorem of this section shows that the usual operations of pass-
ing to the normalizer and to the normal closure of T inside an intermediate
subgroup leave L , invariant.

Theorem. For any H € Ly 4 one has Ng(H),TH € L, 4.

Of course this pattern in the description of intermediate subgroups is
more complicated, than anything we have encountered so far, since passage
from H to TH may generate infinite descending chains. The paper [BKH]
and unpublished works by V.A.Koibaev show that still more complicated
patterns arise when 2 ¢ Ry and for cyclic tori in the general linear groups

GL(n, K).
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§ 19. OVERGROUPS OF TENSORED SUBGROUPS

Let K be a field and U,,... ,U, be vector-spaces over K of dimensions
ny,... ,ny respectively. Then their tensor product V. =U, ®... ® U, has
dimension n = n,...n,. Thus one gets a natural embedding

D =GL(n,K)®...® GL(n, K) < G = GL(n, K).

These groups are obtained by fusing the Aschbacher classes C, and C,.
We are interested in the lattice £(D, G).

Of course once more we are not concerned about their maximality, we
just want them to be large enough. If one wants to get maximal subgroups
one must either assume that ¢ = 2 and n,; # n, (this is the class C,), or
else that n, = ... = n, = m and take the normalizer of D (this is the class
C;). This normalizer is denoted by GL(m,K) T S,. As an abstract group
it is isomorphic to the wreath product GL(n,K)1S,, but in a primitive
representation.

One can construct analogous subgroups also for other groups of Lie type.
Sometimes they fall into different families. For example, both Sp(l, K) ®
Sp(m, K) and SO(l, K) ® SO(m, K) lie in the orthogonal group O(n, K),
n = Im. For the finite case all the details about such embeddings may be
found in [KL2].

Again the group D contains quadratic unipotent elements, so that for
a finite field of characteristic # 2 description of irreducible subgroups con-
taining D up to conjugacy may be deduced from the theory of quadratic
pairs.

We restrict ourselves to a special case of a result by Li Shang Zhi [L9].

Theorem. Let D = SL(I, K) ® SL(m, K), where I,m > 3. Let further,
G = GL(n,K), n = Ilm. Then any subgroup H, D < H < G either
normalizes D or SL(n, K).

When [ = 2 or m = 2 there are additional examples of complete inter-
mediate subgroups. Li Shang Zhi has obtained also analogous results for
overgroups of Sp(l,K) ® Sp(m, K), I,m > 4, in GL(n,K), n = Im, and
announced similar results for other classical groups.

There is no doubt that using ideas similar to those described in § 11
and § 13 one can obtain analogous results for an arbitrary commutative
ring R and arbitrary number of factors ¢ under assumption n,,... ,n, > 3.
The answer involves ideals of R and is similar to, but easier than, that for
the case of subsystem subgroups. As already mentioned, for the fields of
char # 2 this answer should follow also from the theory of quadratic pairs
and its infinite analogue developed by F.Timmesfeld.
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§ 20. OVERGROUPS OF CLASSICAL SUBFIELD SUBGROUPS

In this section we state results about the overgroups of the classical sub-
groups over subfields. These results touch Aschbacher classes C; and ;. In
the form we reproduce them below they are due to E.L.Bashkirov [Bal] —
[Ba7], but of course many special cases were known before.

Theorem. Let K be an algebraic extension of a subfield L. Assume that
eithern > 3 or n = 2 and char K # 2. Then for any subgroup H, such that
SL(n,L) < H < G = GL(n, K), there exists a unique intermediate subfield
E, L<E<K, such that

SL(n, E) < H < Ng(SL(n, E)).

The proof of this result in based on the following remarkable fact which is
a generalization of Dickson’s lemma. Recall that any subgroup in GL(n, K)
conjugate to {¢,,(a), o € L} is called an L-root subgroup. The following
theorem essentially answers the question what can be generated by two
L-root subgroups.

Theorem. Let L be an infinite field and X be an element algebraic over L.
If char L = 2 suppose that X is separable over L. Then

(5 1) (o 7)) =suezon

When A is transcendental over L a theorem of J.Tits asserts that the
group on the left hand side is isomorphic to the free product of two copies
of Lt (see [T3)]). This lemma was first proven by E.L.Bashkirov by very
elaborate explicit calculations [Bal], [Bad4]. Later V.I.Chernousov found
a much shorter algebro-geometric proof. Unfortunately this proof is not
published, see [Z5] for an exposition.

Analogous results hold also for overgroups of other classical groups over
subfields. As a pattern we state the following results from [Ba3] and [BaT].

Theorem. Let K be an algebraic extension of a subfield L. Assume that
esther n = 21 > 4 and char K # 2. Then for any subgroup H, Sp(n,L) <
H < G = GL(n,K), there exists a unigue intermediate subfield E, L < E <
K, such that one of the following holds

(2) Sp(n, E) < H < Ng(Sp(n, E));
(3) SU(n,E) < H < Ng(SU(n, E)).
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This theorem essentially contains description of irreducible subgroups in
GL(n, K) generated by L-root subgroups. For L % F,, F, any such subgroup
is conjugate to one of the following groups: SL(n, E), SU(n, E), Sp(n, E).
Analogous result holds also for the case when char K = 2, but it is much
more delicate, since in the non-separable case it involves subgroups defined
by pairs of intermediate subfields, see [Ba6).

Theorem. Let K be an algebraic extension of a subfield L. Assume that
either n = 21 > 4 and char K # 2. Then for any subgroup H, Q(n,L) <
H < G = GL(n,K), one of the following holds:

(1) H contains an L-root subgroup;

(2) there exists a unique intermediate subfield E, L < E < K, such that

Qn, E) < H < Ng(Qn, E)).

These results generalize a number of preceding results, including in par-
ticular results of R.W.Dye, O.H.King and Li Shang Zhi (see references in
[KL], [L8], [L10], [L11]). Compare also [B5], [Nu].

In fact one can consider a more general problem. Let & be an arbitrary
root system and R < S be an arbitrary embedding of rings with 1. Describe
subgroups intermediate between G(®,R) and G(®,S5). This problem is
solved in several special cases. One of the typical situations considered by
many authors is when S is a good ring, like, say a Dedekind domain, and
R is its field of fractions. This situation was studied by N.S.Romanovskii,
R.A.Schmidt, J.E.Cremona, A.E.Zalesskii and others, see [Ro], [Sch], [Cr],
[Z4]). A.V.Stepanov established much more general results stated in terms
of stability conditions (see references in [Sv]).

§ 21. CONCLUDING REMARKS

In the preceding sections we treated only several typical situations. In
fact for specific fields (like finite, algebraically closed, local, global, etc.)
and for various classes of rings (commutative, semilocal, subject to stability
conditions, Dedekind domains, Hasse domains, etc.) there are many further
results in the same spirit. ,

In this survey we presented almost exclusively results of geometric nature,
where the answer does not essentially depend on the ground field. (Apart
possibly from very few small exceptions). For example, the description
of overgroups of a split maximal torus is a geometric result, saying that
everything looks exactly as in the absolute case. The theorem of Seitz from
§ 17 is another example of a geometric result: the answer is different from
that for the absolute case, but again it does not depend on the finite ground
field and may be modeled at the absolute level. On the other hand § 18 gives



VAVILOV: Intermediate subgroups in Chevalley groups 269

an example of an arithmetic result: the absolute case provides no insight
whatsoever.

One explanation of the geometric answers is that in reality everything
happens in a linear object, like an associative algebra, a Lie algebra or a
Jordan algebra. Let us illustrate this in the example of GL(n, R). In the
examples considered in §§ 4 — 17 the basic subgroups were always multi-
plicative groups of certain R-subalgebras in M(n, R) (in fact subalgebras
defined by linear congruences). The situation in § 18 was quite different.

Observe though that for rings this distinction becomes somewhat shaky
even in such utterly geometric results as the description of overgroups of a
subsystem subgroup. Of course the gqualitative answer does not essentially
depend on the ground ring: only on its lattice of ideals. But as soon as one
tries to actually calculate the factor-groups like N(o)/E(o) one inevitably
encounters K-functors. But explicit calculations of K-functors depend in a
critical way on the arithmetic nature of a ring.

So far we have not touched the class S. In this context one may ob-
serve that simple irreducible groups defined over the ground field rarely
have many overgroups. For an algebraically closed field this was proven by
E.B.Dynkin in characteristic 0 and by G.M.Seitz [S11] in the general case.
Exceptional groups tend to have few simple subgroups which act irreducibly
on their minimal modules, see [Te], [S15]. For the finite case see [LSS], [STe],
[S14]. Some results of this sort have been known before, especially for finite
fields, see, for example [Co] or [Sul], [Su2]. It is probable that results of
such type remain valid for arbitrary fields provided the subgroup is isotropic
enough.

On the other hand description of overgroups of a reducible subgroup H
may be quite complicated even when H itself has a very transparent struc-
ture. One of the arising difficulties is that it is not always immediately
clear how to connect the srreducible overgroups of H with the structure
of the irreducible components of H. For example, I.D.Suprunenko classi-
fied subgroups of GL(n,p™) containing SL(2,p) in a representation with
two irreducible components. As a recent example we could mention [DP1],
[DP2].

ACKNOWLEDGEMENTS

I could repeat here everything I said in [V16], [V17], [V19]. Even not
doing so I must acknowledge the influence of constant discussions and cor-
respondence with Z.I.Borewicz, V.A.Koibaev, G.M.Seitz and A.E.Zalesskii
on the development of my views on the subject.

I would like to express sincere gratitude to my Gastgeber A.Bak for
friendly attention and support during my stay in Germany. Many Ger-
man colleagues, of whom I must mention H.Abels, B.Fischer, H.Helling,



270 VAVILOV: Intermediate subgroups in Chevalley groups

J.Mennicke, U.Rehmann, K.Ringel and R.Scharlau in Bielefeld, O.Kegel,
G.Malle and F.Timmesfeld outside of it, helped me in a number of ways.
It was very useful to discuss the subject with V.P.Platonov, who visited
Bielefeld in 1993.

I very much appreciate the help of C.Parker at the final stage of the

preparation of this work. He carefully read the manuscript and corrected it
in many places (English and otherwise).

(A1]
(A2]
[A3]
[A4]
[A5]

[Az]
(BB]
[Bal]

[Ba2]

[Ba3]

[Ba4]

[Ba5]

BIBLIOGRAPHY

Aschbacher M. On the maximal subgroups of the finite classical groups.
— Invent. Math. - 1984. - V.76, N.3. — P.469-514.

Aschbacher M. Subgroup structure of finite groups. — Proc. Rutgers
Group Theory Year. 1983-84. — Cambridge Univ.Press., 1984.

Aschbacher M. Finite group theory. — Cambridge Studies in Advanced
Math. - Cambridge Univ.Press., 1986, 274P.

Aschbacher M. Finite simple groups and their subgroups. — Lecture Notes
Math. — 1986. - V.1185. — P.1-57.

Aschbacher M. Overgroups of Sylow subgroups in sporadic groups. —
Mem. Amer. Math. Soc. — 1986. - V.343. - 235P.

Azad H. Root groups. — J. Algebra. — 1982. - V.76, N.1. - P.211-213.

Ba M.S., Borewicz Z.I. On the arrangement of intermediate subgroups.
- Rings and Linear Groups. — Krasnodar, 1988. — P.1441 (In Russian).

Bashkirov E.L. On subgroups of SL,(K) over an infinite field K. - Vesti
Akad. Nauk BSSR, ser. fiz.—-mat. nauk. — 1985. - N.2. - P.112-113; Man-
uscript deposited in VINITI. - 1984 — N.7369-84. — 64P. (In Russian).

Bashkirov E.L. On linear group containing the special unitary group of
non-zero index. — Vesti Akad. Nauk BSSR, ser. fiz.—mat. nauk. — 1986. -
N.5. - P.122-123; Manuscript deposited in VINITL — 1985 — N.5897-85.
- 36P. (In Russian).

Bashkirov E.L. On linear group containing the symplectic group. — Vesti
Akad. Nauk BSSR, ser. fiz.—mat. nauk. - 1987. — N.3. - P.116~117; Man-
uscript deposited in VINITI. — 1986 — N.2616-86. — 18P. (In Russian).

Bashkirov E.L. On subgroups of the group SL,(K) over a non-perfect
field K of characteristic 2. — Vesti Akad. Nauk BSSR, ser. fiz.—mat. nauk.
- 1987. — N.5. — P.115-116; Manuscript deposited in VINITI. - 1986 —
N.3248-86. — 25P. (In Russian).

Bashkirov E.L. Some subgroups of the special linear group over a field.
— Vesti Akad. Nauk BSSR, ser. fiz.—mat. nauk. — 1991. — N.1. — P.31-35.
(In Russian).



VAVILOV: Intermediate subgroups in Chevalley groups 271

[Ba6] Bashkirov E.L. Linear groups that contain the group Sp,(K) over a field
of characteristic 2. — Vesti Akad. Nauk BSSR, ser. fiz.—mat. nauk. - 1991.
- N.4. - P.21-26. (In Russian).

[Ba7] Bashkirov E.L. On linear groups containing the commutator subgroup of
the orthogonal group of index at least 1. — to appear in Siberian Math. J.

[Ba8] Bashkirov E.L. English summary of works by E.L.Bashkirov. — unpub-
lished.

[BMo] Berman S., Moody R. Extensions of Chevalley groups. — Israel J. Math.
- 1975. - V.22, N.1. - P.42-51.

[Bo] Borel A. Properties and linear representations of Chevalley groups. —
Lecture Notes Math. — 1970. - V.131. - P.1-55.

[BT] Borel A., Tits J. Groupes réductifs. — Publ. Math. Inst. Hautes Et. Sci.,
1965. — N.27. - P.55-150.

[B1] Borewicz Z.I1. On parabolic subgroups in linear groups over a semilocal
ring. — Vestnik Leningr. Univ. Math. — 1981. - V.9. — P.187-196.

[B2] Borewicz Z.I. On parabolic subgroups of the special linear group over a
semilocal ring. — Vestnik Leningr. Univ. Math. - 1981. - V.9. - P.245-251.

[B3] Borewicz Z.1. Description of subgroups of the general linear group that
contain the group of diagonal matrices. — J. Sov. Math. — 1981. - V.17,
N.2. - P.1718-1730.

[B4] Borewicz Z.1. Some subgroups of the general linear group. — J Sov. Math.
- 1982, - V.20, N.6. — P.2528-2532.

[B5] Borewicz Z.1. Description of subgroups of general linear groups which are
full of transvections. — J. Sov. Math. — 1987. — V.37. — P.928-934.

[B6] Borewicz Z.I. On the arrangement of subgroups. — J Sov. Math. — 1981.
- V.19, N.1. - P.977-981.

[BK1] Borewicz Z.I., Koibaev V.A. Subgroups of the general linear group over
the field of five elements. — In: Algebra and Number Theory, Ordzhoni-
kidze (Vladikavkaz). — 1978. - N.3. — P.9-32. (In Russian)

[BK2] Borewicz Z.1., Koibaev V.A. Subgroups of GL(2, K) containing a non-
split maximal torus. — Vestnik. Sankt-Peterburg. Univ. — 1993. - N.2.

[BKH] Borewicz Z.I., Koibaev V.A., Tran Ngoc Hoi Lattices of subgroups in
GL(2,Q) containing a non-split torus. — J. Sov. Math. — 1993. — V.63,
N.6. — P.622-634.

[BKo] Borewicz Z.1., Kolotilina L.Yu. Normalizers of intermediate subgroups in

the general linear group over a ring. — Vestn. Leningr. Univ., Math. -
1988. - V.21, N.1. - P.1-4.

[BM] Borewicz Z.1., Macedoriska O.N. On the lattice of subgroups. — J. Sov.
Math. - 1984, - V.24, N4. - P.395-399.



272 VAVILOV: Intermediate subgroups in Chevalley groups

[BV1] Borewicz Z.1., Vavilov N.A. Subgroups of the general linear group over a
semilocal ring containing the group of diagonal matrices. — Proc. Steklov
Inst. Math. — 1980. — Issue 4. — P.41-54.

[BV2] Borewicz Z.1., Vavilov N.A. On the definition of a net subgroup. - J. Sov.
Math. - 1985. - V.30. - P.1810-1816.

[BV3] Borewicz Z.1., Vavilov N.A. The distribution of subgroups in the general
linear group over a commutative ring — Proc. Steklov. Inst. Math. — 1985.
- N.3. - P.27-46.

[Bu] Bourbaki N. Groupes et algébres de Lie. Ch. 4-6. — Hermann: Paris. -
1968. — 288P.

[BGL] Burgoyne N., Griess R.L., Lyons R. Maximal subgroups and automor-
phisms of Chevalley groups. — Pacif. J. Math. — 1977. - V.71, N.2, -
P.365—403.

[C1] Carter R.W. Simple groups of Lie type. — London et al.: Wiley. — 1972.
- 331P.

[C2] Carter R.W. Conjugacy classes in the Weyl group. — Compositio Math.
-1972. - V.25, N.1. - P.1-59.

[C3] Carter R.W. Finite groups of Lie type: Conjugacy classes and complex
characters. — London et al.: Wiley. — 1985. — 544P.

[CPS] Cline E., Parshall B., Scott L. Minimal elements of N(H,p) and con-
jugacy of Levi complements of finite Chevalley groups. — J. Algebra. -
1975. — V.34, N.3. - P.521-523.

[Co] Cooperstein B.N. Nearly maximal representations for the special linear
group. — Michigan Math. J. - 1980. - V.27, N.1. - P.3-19.

[CK] Costa D.L., Keller G.E. The E(2, A) sections of SL(2, A). — Ann. Math.
- 1991. - V.134. — P.159-188.

[Cr] Cremona J.E. On GL(n) of Dedekind domains. — Quart. J. Math., 2nd
ser. — 1988. — V.39, N.156. ~ P.423-426.

[De] Dempwolff U. Linear groups with large cyclic subgroups and translation
planes. — Rend. Sem. Math. Univ. Padova. — 1987. - V.77, N.1. - P.69-
113.

[Dj] Djokovi¢ D.Z. Subgroups of compact Lie groups containing a maximal
torus are closed. — Proc. Amer. Math. Soc. —~ 1981. - V.83., N.1. - P.431-
432.

[DP1] Djokovié D.Z., Platonov V.P. Algebraic groups and linear preserver prob-
lems. - Comptes Rendus Acad. Sci. Paris., Sér. 1. — 1993. — T.317. -
P.925-930.

[DP2] Djokovié¢ D.Z., Platonov V.P. Linear preserver problems and algebraic
groups. — to appear.



VAVILOV: Intermediate subgroups in Chevalley groups 273

[D1]

[D2]

[D3]

[Dn]
[}

[Go]

[HO]

[Ha]

[HV]

[He]

[Ho]

[H1]
[H2]
[Km]
[Ka1]

[Ka2]

Dye R.W. Maximal subgroups of symplectic groups stabilizing spreads.
I, II. - J. Algebra. - 1984. — V.87, N.2. - P.493-509; J. London. Math.
Soc. — 1989. — V.40, N.2. - P.215-226.

Dye R.W. Maximal subgroups of finite orthogonal groups stabilizing
spreads of lines. — J. London. Math. Soc. - 1986. — V.33, N.3. - P.279-293.

Dye R.W. Spreads and classes of maximal subgroups of GL,(g), SL,(9),
PGL,(q) and PSL_(q). - Ann. Math. Pura Appli.. — 1991. - V.158. -
P.33-50.

Dynkin E.B. Semi-simple subalgebras of semi-simple Lie algebras. —
Amer. Math. Soc. Transl. Ser. - 1957. - V.6. — P.111-244.

Friedland S. Maximality of the monomial subgroup. — Linear Multilinear
Algebra. - 1985. - V.18. - P.1-T7.

Golubchik I.Z. On the subgroups of the general linear group GL,,(R) over
an associative ring R. - Russian Math. Surveys. — 1984. — V.39, N.1. -
P.157-158.

Hahn A.J., O’Meara O.T. The classical groups and K-theory. — Springer:
Berlin et al. — 1989. - 576P.

Hamdan I. Subgroups of the general linear group over the field of fractions
of a semilocal ring. — Ph. D. Thesis, Leningrad State Univ. — 1987. - T9P.
(In Russian).

Harebov A.L.; Vavilov N.A. On the lattice of subgroups of Chevalley
groups containing a split maximal torus. — Preprint Univ. Warwick. -
1993. — N.14. - 27P.

Hering Ch. Transitive linear groups and linear groups which contain ir-
reducible subgroup of prime order. I, Il. - Geom. dedic. - 1974. - V.2,
N.4. — P.425-460; J. Algebra. — 1985. - V.93, N.1. — P.151-164.
Holubowski W. Subgroups of isotropic orthogonal groups containing the
centralizer of a maximal split torus. — J. Sov. Math. — 1993. — V.63, N.6.
- P.653-656.

Humphreys J.E. Linear algebraic groups. — Springer: New York et al. -
1975. — 247P.

Humphreys J.E. Introduction to Lie algebras and representation theory,
3rd Printing. — Springer: New York et al. — 1980. - 171P.

Kariyama K. On conjugacy classes of maximal tori in classical groups. -
J. Algebra. — 1989. — V.125, N.1. - P.133-149.

Kantor W.M. Subgroups of classical groups generated by long root ele-
ments. - Trans. Amer. Math. Soc.. — 1979. — V.248, N.2. - P.347-379.

Kantor W.M. Linear groups containing a Singer cycle. — J. Algebra. —
1980. - V.62, N.1. - P.232-234.



274 VAVILOV: Intermediate subgroups in Chevalley groups

[Ka3]

[Kad]

[Kel]

[Ke2]
(K1]
(K2]
[K3]

[KL1]

[KL2]

[Kol]

[Ko2]

[Ko3]

[Ko4]

[Ko5]

[Ko6]

[Ko7]

Kantor W.M. Generation of linear groups. — In The geometric Vein: Cox-
eter Festschrift. — Springer Verlag. — Berlin et al., 1981, — P.497-509.

Kantor W.M. Primitive permutation groups of odd degree, and an ap-
plication to finite projective planes. — J. Algebra. — 1987. — V.106, N.1.
- P.1545,

Key J.D. Some maximal subgroups of PSL(n,q), n > 3, ¢ = 2". — Geom.
Dedic. - 1975. — V.4, N.2-4. — P.377-386; erratum - ibid. — 1977. - V.6,
N.3. - P.389.

Key J.D. Some maximal subgroups of certain projective unimodular
groups. — J. London Math. Soc. — 1979. - V.19, N.2. — P.219-230.

King O.H. On subgroups of the special linear group containing the special
orthogonal group. — J. Algebra. — 1985. — V.96, N.1. — P.178-193.

King O.H. On subgroups of the special linear group containing the diag-
onal subgroup. — J. Algebra. — 1990. — V.132, N.1. — P.198-204.

King O.H. The subgroup structure of the classical groups. - Contemp.
Math. - 1992, - V.131, Part.1. — P.209-215.

Kleidman P., Liebeck M.W. A survey of the maximal subgroups of the
finite simple groups. — Geom. dedic. — 1988. — V.25. — P.375-389.

Kleidman P., Liebeck M.W. The subgroup structure of the finite classical
groups. — Cambridge Univ. Press. — 1990. — 303P.

Koibaev V.A. Some examples of non-monomial linear groups without
transvections. — J. Sov. Math. — 1982. - V.20, N.6. — P.2610-2611.

Koibaev V.A. Subgroups of the full linear group over the field of four
elements. — In: Algebra and Number Theory, Nalchik. - 1979. - N.4. -
P.21-31. (In Russian).

Koibaev V.A. A description of D-complete subgroups of the full linear
group over the field of three elements. — J. Sov. Math. — 1984, — V.24,
N.4. - P.434-436.

Koibaev V. A. Subgroups of the full linear group over the field of three
elements. — In: Structural Properties of Algebraic Systems, Nalchik. —
1981. - P.56-68. (In Russian).

Koibaev V.A. On subgroups of the full linear group that contain the
group of elementary block-diagonal matrices. — Vestn. Leningr. Univ.,
Math. — 1982, - V.15. - P.169-177,

Koibaev V.A. Subgroups of the special linear group over fields of four or
five elements which contain the group of diagonal matrices. — Arithmetic
and Geometry of Varieties. — Kujbyshev, 1989. — P.78-91. (In Russian).

Koibaev V.A. Subgroups of GL(2,Q) containing a non-split maximal
torus. — Dokl. Akad. Nauk SSSR. - 1990. - V.41, N.3. — P.414-416.



VAVILOV: Intermediate subgroups in Chevalley groups 275

[Ko8] Koibaev V.A. Subgroups of GL(2, K) containing a non-split maximal
torus. — Zap. Nauchn. Seminarov. Sankt-Peterburg. Matemat. Inst. -
1993. - V.211.
[Kn] Kondratiev A.S. Subgroups of finite Chevalley groups. - Russian Math.
Surv. - 1986. — V.41. - P.65-118.
[Kr1] Krupetskii S.L. Subgroups of the unitary group over a local field. — J.
Sov. Math. — 1982. - V.19, — P.1027-1041.

[Kr2] Krupetskii S.L. Subgroups of the unitary group over a dyadic local field.
— J. Sov. Math. - 1984. - V.24. — P.436—442.
[Kr3] Krupetskii S.L. Intermediate subgroups in the unitary group over a the
skew field of quaternions. ~ J. Sov. Math. - 1984. — V.26. — P.1894-1897.
[L1] LiShang Zhi Maximal subgroups in classical groups over arbitrary fields.
- Proc. Symp. Pure Math. ~ 1987. — V.47, Part 2. — P.487-493.
[L2] Li Shang Zhi Maximality of symplectic groups over fields in linear groups.
— Kexue Tongbao. — 1988. — V.33, N.21. — P.1608-1610. (Chinese).
[L3] Li Shang Zhi Overgroups of certain subgroups in the classical groups
over division rings. — Contemp. Math. — 1989. — V.82. — P.53-57.
[L4] Li Shang Zhi Overgroups in GL(nr, F) of certain subgroups of SL(n, K).
1. - J. Algebra. — 1989. - V.125, N.1. - P.215-235.

[L5] Li Shang Zhi The maximality of monomial subgroups of linear groups
over division rings. — J. Algebra. - 1989. - V.127, N.1. - P.22-39.

[L6] Li Shang Zhi Overgroups of certain subgroups in the classical groups. -
Contemp. Math. — 1989. - V.82. - P.53-57.
[L7] Li Shang Zhi Overgroups of SL(n,K) in GL(n,F) (K C F). - Acta.
Math. Sinica. - 1990. - V.33, N.6. — P.774-778. (Chinese).
[L8] Li Shang Zhi Overgroups of SU(n, K, f) or Q(n, K, f) in GL(n, K). -
Geom. dedic. — 1990. — V.33, N.3. — P.241-250.
[L9] LiShang Zhi Overgroups in GL(U® W) of certain subgroups of GL(U)®
GL(W). L. - J. Algebra. - 1991. - V.137, N.2. - P.338-368.
[L10] Li Shang Zhi A new type of classical groups over skew-fields of charac-
teristic 2. — J. Algebra. — 1991. — V.138, N.1. - P.399-419.
[L11]} Li Shang Zhi Overgroups of a unitary group in GL(2, K). — J. Algebra.
- 1992, - V.149, N.2. — P.275-286.
[LSal] Liebeck M.W., Saxl J. The primitive permutation groups of odd degree.
~ J. London Math. Soc. — 1985. - V.31. — P.250-264.

[LSa2] Liebeck M.W., Saxl J. Maximal subgroups of finite simple groups and
their automorphism groups. — Contemp. Math. — 1992. — V.131, Part 1.
- P.243-259.



276 VAVILOV: Intermediate subgroups in Chevalley groups

[LSS] Liebeck M.W., Saxl J., Seitz G.M. On the overgroups of irreducible sub-
groups of the finite classical groups. — Proc. London Math. Soc. — 1987.
~ V.55, N.3. - P.507-537.
[LSel] Liebeck M.W., Seitz G.M. Maximal subgroups of exceptional groups of
Lie type, finite and algebraic. — Geom. dedic. - 1990. - V.35. - P.353-387.
[LSe2] Liebeck M.W., Seitz G.M. Subgroups generated by root elements in
groups of Lie type. — to appear.
[LSe3] Liebeck M.W., Seitz G.M. Reductive subgroups of exceptional algebraic
groups. — to appear.
[Ne] Newman M. Integral matrices. — N.~Y. — London, 1972. — 224P.
[Nu] Nuzhin Y.N. Groups contained between groups of Lie over various fields.
— Algebra and Logic. - 1983. - V.22. - P.378-389.
[P] Platonov V.P. Subgroups of algebraic groups over local and global fields
containing a maximal torus. — submitted to Compt. Rendus. Acad. Sci.
Paris.
[PR] Platonov V.P., Rapinchuk A.S. Algebraic groups and number theory. -
Moscow, Nauka. — 1991. — 656P. (In Russian, English Transl. in Springer).
[Ro] Romanovskii N.S. On subgroups of the general and the special linear
groups over a ring. — Math. Notes. — 1971. - V.9. — P699-708.
[Sch] Schmidt R.A. Subgroups of the general linear groups over the field of a
Dedekind ring. — J. Sov. Math. - 1982. - V.19. — P.1052-1059.
[S1] Seitz G.M. Flag-transitive subgroups of Chevalley groups. — Ann. Math.
-1973. - V.57, N.1. - P.27-56.
[S2] Seitz G.M. Small rank permutation representations of finite Chevalley
groups. — J. Algebra. - 1974. — V.28, N.3. — P.508-517.
[S3] Seitz G.M. Subgroups of finite groups of Lie type. — J. Algebra. ~ 1979.
- V.61, N.1. - P.16-27.
[S4] Seitz G.M. Properties of the known simple groups. — Proc. Symp. Pure.
Math. - 1980. - V.37. — P.231-237.
[S5] Seitz G.M. On the subgroup structure of classical groups. - Comm. Al-
gebra. — 1982. - V.10, N.8. - P.875-885.
[S6] Seitz G.M. Root subgroups for maximal tori in finite groups of Lie type.
— Pacif. J. Math. — 1983. - V.106, N.1. — P.153-244.
[S7] Seitz G.M. Parabolic subgroups containing the centralizer of a unipotent
element. — J. Algebra. — 1983. — V.184, N.1. — P.240-252.
[S8] Seitz G.M. Unipotent subgroups of groups of Lie type. — J. Algebra. -
1983. — V.84, N.1. - P.253-278.
[S9] Seitz G.M. Overgroups of irreducible linear groups. - Proc. Rutgers
Group Theory Year, 1983/84. - Cambridge Univ. Press, 1984. — P.95-106.



VAVILOV: Intermediate subgroups in Chevalley groups 277

[S10] Seitz G.M. Representations and maximal subgroups. — Proc. Symp. Pure
Math. — 1987, — V.47. — P.275-287.

[S11] Seitz G.M. Maximal subgroups of classical algebraic groups. — Mem.
Amer. Math. Soc. — 1987. — V.67, N.365. — 286P.

[S12] Seitz G.M. Representations and maximal subgroups of finite groups of
Lie type. — Geom. dedic. ~ 1988. - V.25. — P.391-406.

[S13] Seitz G.M. Maximal subgroups of exceptional groups. — Contemp. Math.
- 1989. - V.82, - P.143-157.

[S14] Seitz G.M. Cross-characteristic embeddings of finite groups of Lie type.
— Proc. London. Math. Soc. — 1990. - V.60, N.1. — P.166-200.

[S15] Seitz G.M. Maximal subgroups of exceptional algebraic groups. — Mem.
Amer. Math. Soc. — 1991. - V.90, N.441. - 197P.

[S16] Seitz G.M. Subgroups of finite and algebraic groups. — Groups, Combina-
torics and Geometry, (Durham — 1990). - Cambridge Univ. Press, 1992.
- P.316-326.

[SST] Seitz G.M., Solomon R., Turull A. Chains of subgroups in groups of Lie
type. II. — J. London Math. Soc. - 1990. - V.42, N.1. - P.93-100.

[STe] Seitz G.M., Testerman D.M. Extending morphisms from finite to alge-
braic groups. — J. Algebra. — 1990. — V.131. - P.559-574.

[STu] Solomon R., Turull A. Chains of subgroups in groups of Lie type. I. —
J. Algebra. - 1990. - V.132, N.1. — P.174-184.

[Sp] Springer T.A. Linear algebraic groups. 2nd ed. — Birkhiduser: Boston et
al.,1981. — 320P.

[SS] Springer T.A., Steinberg R. Conjugacy classes. — Lecture Notes Math. —
1970. - V.131. - P.167-266.

[St] Steinberg R. Lectures on Chevalley groups. — Yale University. — 1968. —
277P.

[Sv] Stepanov A.V. On the distribution of subgroups normalized by a given
subgroup. — J. Sov. Math. — 1993. - V.198. — P.769-776.

[SK] Subbotin I.Ya., Kuzennyj N.F. On groups with fan subgroups. — Con-
temp. Math. — 1992. - V.131, Part. 1. - P.383-388.

[Sul] Suprunenko I.D. Subgroups of GL(n,p) containing SL(2, p) in the irre-
ducible representation of degree n. - Math. USSR Sbornik. - 1980. -
V.37. - P.425-440.

[Su2] Suprunenko I.D. Subgroups of GL(n,p™) containing SL(2, p) in the irre-
ducible representation of degree n. I, II. — Izv. Akad. Nauk. BSSR, Ser.
Fiz.-Math. — 1979. — N.1. - P.18-24; N.2. — P.11-16. (In Russian).

[Sz1] Suzuki K. On parabolic subgroups of Chevalley groups over local rings.
— Tohoku Math. J. — 1976. - V.28, N.1. - P.57-66.



278 VAVILOV: Intermediate subgroups in Chevalley groups

[Sz2] Suzuki K. On parabolic subgroups of Chevalley groups over commutative
rings. — Sci. Repts. Tokyo Kyoiku Daigaku, Sect.A. — 1977. — N.366-382.
- P.225-232.

[Te] Testerman D. Irreducible subgroups of exceptional algebraic groups. —
Mem. Amer. Math. Soc. — 1988. - V.75, N.340. — 190P.

[Ti1] Timmesfeld F.G. On the identification of natural modules for symplectic
and linear groups defined over arbitrary fields. — Geom. dedic. — 1990. —
V.35, N.1. - P.127-142.

[Ti2] Timmesfeld F.G. Groups generated by k-transvections. — Invent. Math.
- 1990. - V.100. - P.167-206.

[Ti3] Timmesfeld F.G. Groups generated by k-root subgroups. — Invent. Math.
- 1991. - V.106. - P.575-666.

[Ti4] Timmesfeld F.G. Groups generated by k-root subgroups — a survey. -
Groups, Combinatorics and Geometry, (Durham - 1990). - Cambridge
Univ. Press, 1992. — P.183-204.

[T1] Tits J. Théoréme de Bruhat et sous-groupes paraboliques. — C. R. Acad.
Sci. Paris. — 1962. — V.254. - P.2910-2912.

[T2] Tits J. Groupes semi-simples isotropes. - Colloq. Théorie des groupes
algébriques (Bruxelles, 1962). — Paris, 1962. — P.137-147.

[T3] Tits J. Ensembles ordonnés, immeubles et sommes amalgamées. — Bull.
Soc. Math. Belg., Sér. A. — 1986. — V.38. — P.367-3817.

[Tu] Tuma J. Intervals in subgroup lattices of infinite groups. — J. Algebra. —
1989. - V.125. - P.367-399.

[V1] Vavilov N.A. Parabolic subgroups of Chevalley groups over a semi-local
ring. — J. Sov. Math. — 1987. - V.37. - P.942-952.

[V2] Vavilov N.A. On subgroups of the general linear group over a semi-local
ring that contain the group of diagonal matrices. ~ Vestnik Leningr.
Univ., Math. — 1981. - V.14. - P.9-15.

[V3] Vavilov N.A. On subgroups of split orthogonal groups in even dimensions.
- Bull. Acad. Polon. Sci., Ser. Sci. Math. — 1981. - V.29, N.9-10. - P.425-
429,

[V4] Vavilov N.A. Bruhat decomposition for subgroups containing the group
of diagonal matrices. [, IL. — J. Sov. Math. — 1984. — V.24. — P.399-406;
1984. - V.27. - P.2865-2874.

[V5] Vavilov N.A. Parabolic subgroups of Chevalley groups over a commuta-
tive ring. — J. Sov. Math. — 1984. — V.26, N.3. — P.1848-1860.

[V6] Vavilov N.A. On subgroups of the special linear group that contain the
group of diagonal matrices. I, I, III, IV. — Vestnik Leningr. Univ., Math.



VAVILOV: Intermediate subgroups in Chevalley groups 279

[v7l

[V8]
[V9]
[V10]
[V11]

[V12]

[V13]
[V14]
[V15]
[V16]
[V17]
[V18]

[V19]

[V20]

[Va1]

[VD]

—1985. — V.18, N.4. - P.3-7; 1986. — V.19. - P.9-15; 1987. - V.20. -
P.1-8; 1988. - N.3. - P.7-15.

Vavilov N.A. Maximal subgroups of Chevalley groups containing a split
maximal torus. — Transl. Amer. Math. Soc., 2nd Ser. - 1991. — V.149. -
P.53-59.

Vavilov N.A. Bruhat decomposition of one-dimensional transformations.
— Vestnik Leningr. Univ., Math. - 1986. - V.19. - P.17-24.

Vavilov N.A. A conjugacy theorem for subgroups of GL, containing the
group of diagonal matrices. — Colloq. Math. - 1987. - V.54, N.1. - P.9-14.

Vavilov N.A. Subgroups of split classical groups. ~ Dr. Sci. Thesis (Ha-
bilitationsschrift), Leningrad State Univ. — 1987. — 334P. (In Russian).

Vavilov N.A. Weight elements of Chevalley groups. — Soviet Math. Dokl.
- 1988. - V.37, N.1. - P.92-95.

Vavilov N.A. Conjugacy theorems for subgroups of extended Chevalley
groups containing a split maximal torus. — Soviet Math. Dokl. — 1988. -
V.37, N.2. — P.360-363.

Vavilov N.A. Structure of split classical groups over commutative rings.
— Soviet Math. Dokl. - 1988. - V.37. — P.550-553.

Vavilov N.A. On subgroups of split orthogonal groups. I, II. - Siberian
Math. J. — 1988. - V.29, N.3. — P.341-352; ibid, submitted.

Vavilov N.A. On subgroups of split orthogonal groups over a ring. -
Siberian Math. J. — 1988. - V.29, N.4. - P.537-547.

Vavilov N.A. On subgroups of the split classical groups. — Proc. Math.
Inst. Steklov. - 1991. - N.4. - P.2741.

Vavilov N.A. Subgroups of Chevalley groups containing a maximal torus.
— Transl. Amer. Math. Soc. - 1993. - V.155. - P.59-100.

Vavilov N.A. On subgroups of the spinor group containing a split maximal
torus. [, II. — J. Sov. Math. — 1993. — V.63, N.6. — P.638-653.

Vavilov N.A. Structure of Chevalley groups over commutative rings. —
Proc. Conf. Non-associative algebras and related topics, Hiroshima -
1990. - World Sci. Publ.: Singapore et al. — 1991. — P. 219-335.

Vavilov N.A. Unipotent elements in subgroups of extended Chevalley
groups containing a split maximal torus. — Russian Math. Doklady. -
1993. - V.328, N.5. — P.536-539.

Vavilov N.A. Unipotent elements in subgroups which contain a split max-
imal torus. — Preprint Univ. Warwick. — 1993. - N.13. - 10P.

Vavilov N.A., Dybkova E.V. Subgroups of the general symplectic group

containing the group of diagonal matrices. I, II. - J. Sov. Math. — 1984.
- V.24. - P.406-416; 1985. - V.30. - P.1823-1832.



280 VAVILOV: Intermediate subgroups in Chevalley groups

[VP]
[Wa]
(W]
[Z1]
[22]
(23]

[24]
[25]

Vavilov N.A., Plotkin E.B. Net subgroups of Chevalley groups. I, II. -
J. Sov. Math. - 1982, - V.19. - P.1000-1006; 1984. — V.27. — P.2874-2885.
Walter J.H. Rigid cyclic subgroups in Chevalley groups. I. — J. Algebra.
-1990. - v.131, N.2. - P.688-702.

Wilson J.S. Economical generating sets for finite simple groups. — This
Volume.

Zalesskii A.E. Linear groups. — Russian Math. Surveys. — 1981. — V.36,
N.5. - P.56-107.

Zalesskii A.E. Linear groups. — J. Sov. Math. - 1985. - V.31, N.3. -
P.2974-3004.

Zalesskii A.E. Linear groups. — Itogi Nauki i Techniki, Fundamental
Trends of Math.. - 1989. — V.37. - P.114-228,

Zalesskii A.E. On maximal subgroups of Chevalley groups. — unpublished.
Zalesskii A.E. Subgroups of SL,(P) containing SL,(F'), where P/F is an
algebraic field extension. — unpublished.



THOMAS WEIGEL

On a certain class of Frattini extensions of

finite Chevalley groups.

INTRODUCTION

Let X denote some simply connected simple Chevalley group scheme, i.e.,
X = Ay, By, Cy, Dy, Es..8, F4, G2. By F; we will denote a finite field with
q elements and we define F to be its algebraic closure. The purpose of this
note is to consider extensions

1—N— H— X(F,) — 1, (*)

where N is isomorphic to £x(F,):= £x ® F, as Fy X(F,;)-module and £x
denotes the Z-Lie ring associated to a Chevalley basis.

In the first section we study a particular extension (#*) which is defined
via the algebraic integers of some p-adic numberfield of characteristic 0. It
will turn out that apart from a finite number of examples (**) is a Frattini
extension.

The study of extensions mentioned above is equivalent to the analysis of the
second degree cohomology group H*(X(F,), £x(F,)). In the second section
we will follow the approach given by E.Cline, B.Parshall, L.Scott and W.van
der Kallen [3] to calculate this cohomology group in certain particular cases.
It will turn out that ”generically” the extension (##) is the unique non-split
extension.

In section 3 we will give some conclusions concerning the profinite completion
X (A) of the arithmetic group X(A), where A is the ring of algebraic integers
of some numberfield K.

This note contains only sketches of proofs. Full proofs of the statements will
appear in [9)].

1. EXAMPLES ARISING FROM ARITHMETIC GROUPS.

Apart from the split extension there exists another “canonical” extension:
Let K/Qp be the unramified extension of Qp with res(K) ~ F,, let O denote
the ring of algebraic integers of K and p:= p.©Q the unique maximal ideal
in O. Put R:= O/p?. Then X(R) ~ X(O)/M,, where M; denotes the k'*
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congruence subgroup (7, Cor. 4.4.]. Recall that
My:= {g € X(O)|4(9) = idw(mod p*)}

for some appropriate faithful rational representation ¢: X(K) — GLg(V),
im(¢|X(0)) < GLo(W) and for some free O-module W < V of maximal
rank. Then X(O)/M; ~ X(F,) as abstract groups and M;/M; ~ L£x(F,)
as Fy X(F,)-modules (cf. [9, (3.5.)]). For example if X = A,_; = SL, and
K = Q,, one has the extension

1 — 5b,(Fp) — SLa(Z/p*Z) —> SLa(Fp) — 1
For these extensions one can show the following:

Theorem 1. Let X and R be as above.
(a) Let (X,q) # (A1,3), (A2,2), (G2,2). Then

1 — £x(F,) — X(R) — X(F,) — 1 (%)

is a non-split extension.

(b) Let (X,q) # (A1,2), (A1,3), (A1,4), (A2,2), (43,2), (B2,2), (Bs,2),
(Bs,2), (C3,2), (D4,2), (Fy,2), (G2,2). Then (**) is a Frattini ectension.
Furthermore, if (X,q) = (A1,2), (A1,3), (A1,4), (A2,2), (A3,2), (Bs,2),
(B3,2), (D4,2), (G2,2), then (xx) is a non-Frattini extension.

Remarks: (1) For X = A; and ¢ prime the above theorem follows from some
work of B.Beisiegel [1].

(2) For p > 5 this was remarked by R.L.Griess (Lecture given at the Santa
Cruz Conference (1979)).

(3) Three cases remain to be considered: (X, q) = (B4,2), (C3,2) or (Fy,2).

Idea of the Proof. (a) The proof will be done in 2 steps. First one proves the
assertion for some easier particular cases, namely X = A; or (X, ¢) = (Cy, 3),
second one reduces the general case to one of these particular cases.

Let H:= SLiy1(R), I > 1, and W the rational free RH-module of R-rank
[+ 1. Then the following holds:

(1) p # 2,3. Then there exists no element of order p in H, which acts as
transvection on W/p.W.

(if) p =3, 1> 2. Then there exist no elements g,h € H of order p, [g,h] =1,
which act as transvection on W/p.W.

(i) p=3,1=1,qg > p. Let ¢ € H be an element of order p acting as
transvection on W/p.W. Let P € Syl,(Cg(g)). Then P contains only 2
elements of order 3.
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(iv) p = 2,1 > 3. There exist no elements o4 j, ¢ # j, ¢,7 € {1,...,1+ 1} of
order 2 in H which act as transvection on W/p.W, and satisfy [ j, ok,m] = 1
for k # j and [o4 j, oj,m] = @i g

(V) p=2,1=23,q>p Let o« € H be an element of order 2 acting as
transvection on W/p.W with center € and axis A. Then for every element
B € H of order 2 acting on W/p.W as transvection with center € and axis A,
one has aN = N, where N = ker(X(R) — X (F,)).

(vi) p=2,1 = 1. Then H does not contain elements of order 2 acting as
transvection on W/p.W.

Thus the facts (i),..,(vi) imply that (#*) is a non-split extension or (X, q) =
(A1,3), (A2,2). Similar arguments as previously mentioned show that for
(X,q) =(C3,3), (+) is a non-split extension.

For the reduction step the following elementary lemma will be useful.

Lemma 2. (cf. [9, Lemma 4.4.]) Let C — A —» B be a split extension of
a finite group B by some finite elementary abelian p-group C. Assume that
U is a subgroup of A such that UNC has an U-invariant complement in C.
Then CNU — U — UC/C splits aswell.

In our case this yields the following:

Lemma 3. (cf. [9, Lemma 4.6.]) Let Y — X be a simple simply-connected
scheme corresponding to a subrootsystem ¥ of the rootsystem ® of X. Let A
denote a base of ¥ and Il a base of ®. Assume that

(1) rk(Asr)sellrea = Th(Arr)rrea or rk(®) = rk(¥),
and
(2) reV¥,s€®\V ir+s€dimpliesir+s gV or |M,,;| =0(mod p),

where A, is the cartan matriz and |M, ;| = (P;H), where P denotes the
mazimal non-negative number k such that s — kr € ®. Then a splitting of
the extension £x(Fy) — X (R) — X(F,) induces a splitting of the extension

Ly (Fy) — Y(R) — Y (F,).

The lemma allows a reduction to one of the previously mentioned cases or
(X,q) = (G2,2). One may choose the subscheme Y as listed in Table 1. This
completes the proof of part (a).

For (b) additional information on the Loewy series of the Fy X (F,)-module
£x(F,) is necessary.



284 WEIGEL: On a certain class of Frattini extensions

Table 1
® v Conditions on p

A, I>1 Ay, k<l P\ (k+1)

B, 1>2 By, k<l pF2
Ap, k<l ph(k+1)

By A1, (long) *

Bg A3, (long) *

B, As *

C, >3 Cy, k<l p#2
Ay, k<l o\ (k+1)

D, 1>4 Dy, k<l p#2
A, k<l P\ (k+1)

Dy Az *

E, 1=6718 Dy p#2
Ay pP#S

F4 B4 *

G, 41, (long) p#2
Az, (long) *

Lemma 4. (G.Hi8 [4], G.Hogeweij [5], J.Hurley [6]) Let (X,p) # (Bi,2),
(C1,2), (F4,2), (G2,3). Then soc(L£x(Fy)) = Z(£x(Fy)) and Z(Lx(Fy)) isa
trivial X (Fg)-module of Fq-dimension rk(®) — rk((Ayrs)r,sea). Furthermore,
L£x(Fq)/Z(Lx(F,)) is an absolutely irreducible Fq X (Fg)-module.

Using Lemma 4 and the knowledge of the p-part of Schur multipliers of finite
Chevalley groups one obtains that for (X, p) # (B, 2), (Ci,2), (F4, 2), (G2, 3)
and (X, q) # (A1,2), (A1,3), (A1,4), (A2,2), (A3a2)’ (D4,2), (G2a2)a (k)
is a Frattini extension. For the remaining cases one has to use a similar
reduction argument as the previously mentioned one (cf. [9, Lemma 4.10.}]).
Finally one can show the following embeddings:

A (F3) — Ai(Zs),
Az(F32) — Az(Zy),
G2(F2) — Ga(Z2),
2.A1(F2) — Al(Zg),
2.A4)(Fy) — A1(0),
2.Bg(F2) — Bg(Zz),
22.Dy(F2) — D4(Z2),

where Z,, denote the p-adic integers and O the algebraic integers of the field
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K = Qy(¢), where €2 + ¢ +1 = 0. Furthermore, 2.43(F;) — A3(Z/4.Z) and
2.B,(F2) < B3(Z/4.Z). This completes the proof of the theorem. |

2. REMARKS ON COHOMOLOGY.

The major source for our considerations concerning the cohomology group
H*(X(F,), £x(F,)) is the following theorem of E.Cline, B.Parshall, L.Scott
and W. van der Kallen (3, (6.6.)].

Theorem 5. Let M be a finite dimensional rational FX(F)-module and
n € Ny. For a non-negative number e let M) be the module obtained by
“wisting” with the Frobenius endomorphism z — zP°. Then there ezist non-
negative integers eg and fo such that for ¢ > pP and e > ¢

Fut (X (B), M) o H™(X (Fy), MPY) & HY(X(F,), M).

ral

Indeed, in their proof they also show a way how to determine the numbers eq
and fo explicitely for a given module M and n € Ny. In our case one obtains
the following

Proposition 6. Let ¢ = pf, f > 2 and q # 4,8,9,16,25. Then
HZy(X(F), £x(F)P)) > H*(X(F,), £x (F)).

In the case that £x(F) is an irreducible FX(F)-module, the second degree
cohomology with coefficient in £x(F) has been determined by J.B.Sullivan
(cf. [8, Prop.3)).

Theorem 7. Let £x(F) be an irreducible FX(F)-module, ic., (X,p) #
(Al,p),pl(l+1); (th); (01,2), (D[,z), (F4,2); (Eﬁ,'?’): (E7»2): (G273)' Then

B2 (X(F), Ex (B = { Q) for e =0

Thus Proposition 6 and Theorem 7 imply the following

P!‘OpOSitiOl’l 8. Let (X,p) 96 (AI,P),pI(l + 1)1 (B[,Z), (01,2): (D[,Z),
(F4,2), (Es,3), (E1,2), (G2,3) and ¢ = p/, f > 2, ¢ #4,8,9,16,25. Then
H*(X(F,), £x(F)) ~F.
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This treatment cannot give any information if F; is a prime field. For “small”
fields and small rank there are examples where H?(X (F,), £x(F)) ¢ F, e.g.,
H?(A,(F3), £4,(F)) = 0, H2(A2(F3), £4,(F)) = 0. However, it seems most
likely that the condition f > 2 can be removed (up to a finite number of
exceptions) from the proposition above. This is also motivated by the fact
that for all primes p # 2,3, H2(A1(F,), £4,(F)) =~ F (cf.[2]).

Let G be a finite group and M a finite F,G-module. Then H*(G,M) =
H*(Homp, (P, M)), where P = (P;, §;) denotes a free resolution of the trivial
module F,. Thus

H*(G, M) @, F = H*(Homg,c(P, M) ®F, F).

Since each of the free modules P; can be chosen to be finite dimensional over
F,, one has

HOIII]FqG(Pi,M)®]Fq ~ Hompg(P; ®F, F, M ®F, F).

Since P; ®F, F is a free FG-module, P ®p, F = (P; ®F, F,0; ® id) is a free
resolution of the trivial FG-module F. Thus

H*(G,M) @y, F ~ H*(G, M @, F).

Under the hypothesis of Proposition 8, £x(F,) is an absolutely irreducible
F,X(F,)-module and £x(F;) ®F, F ~ £x(F) as FX(F,;)-module. Thus it
follows that

H*(X(F,), £x(F,)) ~ F,.

In particular, in this case there exists a unique non-split extension

and Theorem 1 implies that H ~ X(R).

3. REMARKS ON ARITHMETIC GROUPS.

Theorem 1 generalizes immediately to the arithmetic groups X(K), where
K/Q, is a finite unramified extension. If K is any finite extension field of Q,
one obtains the following:

Corollary A. Let K/Q, be a finite extension of the p-adic numbers. Let
O denote the ring of algebraic integers of K and q: = res(K). Consider the
extension

1 — M; — X(0) — X(F,) — 1, )
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where M denotes the first congruence subgroup of X(0). If K/Q, is un-
ramified, then the extension () is a Frattini extension or

(X,F) = (A1,F3), (A1, F3), (A1, Fy), (A2, F2), (Aa, F2),
(B2,F3),(Bs, F2),(Bs, F2),(Cs,F2), (D4, F2), (G2, F2), (Fy, F2).

On the other hand if (1) is a Frattini extension, then K/Q, has to be unram-
ified and

(X’ F) #(Al’ Fz)a (Al’ Ij'i‘3)a (Al’ Ij'i‘4), (A21 Fz), (A31 Fz),
(Bz,F2), (Bs,F2), (D4, F2), (G2, F2).

There exists also a globalisation of Corollary A. Let K be a numberfield, i.e.,
|K/Q] < oo, and let A denote the algebraic integers of K. Then the strong-
approximation-property implies that X(A) ~ X (A), where X (A) denotes the
completion of the discrete group X (A) with respect to the topology defined
by the congruence subgroups of X(A), and A denotes the closure of 4 in
the finite adele ring of K. In particular, A ~ @D, Av, where % is the set
of all finite places of K and A, is the completion of A with respect to v.
One can use the solution of the congruence-subgroup-problem for Chevalley
groups (cf. [7]) to translate the globalisation of Corollary A in the language

of profinite groups. Then one obtains the following:

Corollary B. Let K be a algebraic number field and let A denote the ring
of algebraic integers in K. Let X(A) denote the profinite completion of the
discrete group X(A). Assume further that X # A;, B, and also that for
p=2, X # Ay, As, B;, By, C3, Dy, G3, Fy. Then K/Q is unramified in p
if and only if 0,(X(A)) < Frat( X(A)).
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ECONOMICAL GENERATING SETS
FOR FINITE SIMPLE GROUPS

John S. Wilson

1. Generators for finite simple groups

The search for small generating sets for finite simple groups, and other closely
related groups, dates back to the beginning of the twentieth century, and,
while it is less fundamental than the study of subgroup structure, it has
always provided a good test for the power of existing techniques and an
impetus for the development of new ones. In his book ‘Linear Groups with an
Exposition of the Galois Field Theory’, written in 1900, L. E. Dickson proved
that for each odd prime power ¢ # 9 the group SL3(g) can be generated by

(1) = ()

where ) is a field generator. In 1901, Miller [19] showed that each simple
alternating group Alt (n) can be generated by two elements, and that the

the two matrices

generators can be chosen to have orders 2 and 3 except when n = 6,7 or
8. He also showed in a later paper [20] in 1928 that the generators can
be chosen to have orders 2 and m for any integer m > 4 such that Alt (n)
has elements of order m. In an important paper in 1962, Steinberg [21]
showed that all finite simple groups of Lie type can be generated by two
elements, and, as a consequence of results of Aschbacher and Guralnick [2]
in 1984, each of the sporadic simple groups can be generated by two elements.
Therefore one of the many remarkable facts to emerge from the classification
of the finite simple groups is the statement that every finite simple group
can be generated by two elements. Indeed, finite simple groups have many
generating pairs: Dixon [9] has proved that the probability that a randomly
chosen pair of elements of an alternating group G generates G tends to 1

as |(G] — oo, and Kantor and Lubotsky [12] have proved the corresponding
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statement for finite simple classical groups. Thus one may hope to find
generating pairs satisfying a variety of additional conditions. The additional
condition that we shall consider here is that one generator has order 2 and
the other has preassigned order. A discussion of generating pairs satisfying

conditions of other types can be found in [5] and [11].

Steinberg wrote in his paper [21] on generation of Chevalley groups by pairs
of elements “it is possible that one of the generators can be chosen of order
2 ... if true, [this result] would quite likely require methods much more
detailed than those used here”. Both parts of this prediction turned out to
be true. It was proved in 1992 by Malle, Saxl and Weigel [16] that every finite
simple group can be generated by an involution and one other element. This
result was the culmination of work of many authors, starting with the work
of Miller [19], [20] on the alternating groups, and a paper of Brahana [4] in
1930 in which appropriate generating pairs were given for all simple groups
of order less than one million known at that time. Two important steps on
the way were the treatment of the groups of type PSL,(q) by Albert and
Thompson [1] in 1959 and the work of Aschbacher and Guralnick [2] which
covers the sporadic groups and the groups of Lie type of rank 1. The results
became progressively more difficult to prove, and the work in [16] relies on
close knowledge of the subgroup structure of the finite simple groups and also
makes use of the Deligne-Lusztig theory of characters of reductive groups.
In view of the increasing complexity of the proofs of the results mentioned
above, when considering to what extent the order of the second generator
can be restricted we shall clearly have to be content with results which are

less comprehensive.

A group (G is said to be (2, m)-generated if it can be generated by an invo-
lution and an element of order m. Because the (2,2)-generated groups are
just the dihedral groups, the first interesting case concerns (2, 3)-generation.
This case is of particular interest because the (2, 3)-generated groups are just
the images of order at least 6 of the modular group PSL3(Z), since PSLy(Z)
is isomorphic to the free product C5 * C3. For this reason the determination
of the simple (2,3)-generated groups has received a considerable amount
of attention. We have already discussed the result of Miller [19] on the



WILSON: Economical generating sets for finite simple groups 291

(2, 3)-generation of alternating groups. The sporadic simple groups which
are (2, 3)-generated were determined by Woldar [31]: Mji, Maa, Ma23, McL
are not (2, 3)-generated, and all of the other sporadic simple groups are.
We shall therefore restrict our attention to the groups of Lie type. Clearly
the Suzuki groups are not (2,3)-generated since they have no elements of
order 3. The groups PSL3(9), PSL4(2) are isomorphic to Alt (6), Alt (8)
and so are not (2,3)-generated. Two other classical groups which are not
(2,3)-generated are PSL3(4) and PSU3(32). The latter group is not (2, 3)-
generated since it was shown by Wagner [29] that it cannot be generated by
three involutions; on the other hand if G = (a, b) is perfect and a? =3 =1
then clearly G is generated by the three conjugate involutions a,ab,a®. It
has been shown by Malle [14], [15] that the Chevalley groups G»(g) and the
twisted groups 2Gs(g), 3D4(q) and 2Fy(q) are (2, 3)-generated.

Conjecture. (Di Martino—Vavilov [6]) All finite simple groups of Lie type are
(2, 3)-generated except for some groups of low rank in characteristics 2 and
3.

The principal evidence for this conjecture is provided by the following results:

Theorem 1. (a) (Tamburini, [22]) For all ¢ and all n > 25, the group
PSLn(q) is (2, 3)-generated.

(b) (Tamburini-Wilson—-Gavioli, [28]) For n > 37, the following are (2, 3)-
generated: PSp,,.(q), for ¢ odd; PQ%, (), for all g; PSUs,(g?), for ¢ odd.

(¢) (Tamburini-Wilson, [27]) For n > 55, the following are (2, 3)-generated:
PQ2n41(q), for all ¢; PQ3,..(q), for ¢ odd; PSU3,,(¢?), for ¢ even; and
PSU2n+1(q2), for q odd. ’

Therefore, of the simple classical groups of large rank, all groups of odd
characteristic and most of even characteristic behave in accordance with the
conjecture. It is likely that the remaining groups can be handled using sim-
ilar methods. If this turns out to be the case, then in a sense the conjecture
will be established. However, the task of finding accurate bounds on ranks

in these results will remain, and this seems likely to be difficult.
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2. Generators for E,(R)

The proof of Theorem 1 depends on some methods for constructing gener-
ating sets developed by Chiara Tamburini and me in a series of papers [22],
[25], [26], [27], [28], [30]. These methods are rather flexible and I want to
give an illustration of their use. We need a concise and easily manipulated
notation which is well adapted to the problems under consideration, and
this is obtained by keeping as close as possible to permutation matrices, for
which the notation for permutations is available, and by keeping track of

information in diagrams like those in Figure 1 and Figure 2 below.

For simplicity I will concentrate on groups of type SL,, but it is not neces-
sary to consider only groups defined over finite fields. The extra generality
introduced below will be justified by an application to finite classical groups
at the end of Section 3.

Let R be any commutative ring with a 1. As usual we denote by e;; a
matrix with (7, j)-entry 1 and all other entries 0, and we denote by E,(R)
the subgroup of GL,(R) generated by {1+ Xe;; | i # jA € R}. If R
is Euclidean or semilocal (in particular, if R is a finite ring), then E,(R)

coincides with the group SL,(R) of matrices of determinant 1.

We note that if E,(R) is generated by finitely many matrices then R is
generated as a ring by the finitely many entries of these matrices. It was
proved in [28] that if R is any finitely generated ring then E,(R) is (2,3)-

generated for all sufficiently large n:

Theorem 2. (Tamburini-Wilson-Gavioli, [28]) Let the ring R be generated
by ty,...,ta, where t, is a unit of R of finite multiplicative order. Then
En(R) is (2, 3)-generated for all n > 12d + 16. Similar results hold for some

other classical groups.

Theorem 2 takes a particularly striking form in the case when R = Z, because
it shows that PSL,(Z) is an epimorphic image of PSL,(Z) for all n > 28. By
contrast, if r > 3 then SL,(Z) has the congruence subgroup property (from



WILSON: Economical generating sets for finite simple groups 293

Mennicke [18] and Bass, Lazard and Serre [3]), so that all proper images of
PSL,(Z) are finite.

Instead of indicating a proof of Theorem 2, I will sketch the proof of an

easier result.

Theorem 3. If R is as in Theorem 1 and m > 7 then E,(R) is (2, m)-
generated for alln > (2m + 2d + 2)m + 1.

Assume that the hypotheses of Theorem 3 hold. We may write n = hm + r
where h is even and 1 < r < 2m; thus k > 2m + 2d + 2. We regard GL,,(R)
as acting in the usual way on a free R-module M having a basis Q with n
elements. To simplify the description of our matrix generators we label the
elements of € as 'u;'- for 1 <i<h1<j<mandy,...,y,., and regard

these elements as arranged in a diagram as follows:

vy v Um
v ovi v v}
[ya] o] o] ... 0}
[y3] v
'u,?,‘l
L VS .
Figure 1

Thus the elements v;: are arranged in b rows R; = {'u_; [1<j<m}ofm
elements, with the first element of R;y; below the last element of R;, and y;
is placed below below v§ for each appropriate k, so that there are h — 1+
columns of length 2. We let b,4; be permutations of @ whose orbits of
length greater than 1 are respectively the rows and the columns; thus 4 has
order m and a; has order 2. This description determines a; completely, but

we shall need to specify the action of b more precisely: let

— [ i i i
b= H(”u”z, ce 3 V2 Vi Um)-
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We shall regard permutations of €2 as module automorphisms of M in the

obvious way. Let ay be the module automorphism which acts with matrix

1 ¢,
0 -1
on the submodule with basis v2™+2k=1 2m+2k f5; 1 < k < d, maps v} to

+v} (where the choice of sign will be explained below) and fixes all other

elements of Q. It is clear that a; has order 2.

We shall make repeated use of the following observation. Suppose that
Q=0Q,UQ2 and Q; N Q2 = 0 and let p1,p2 € GL(M). If p; acts as the
identity on €; and maps (Q\;) to itself for i = 1,2, then ¢,, ps commute.

Set @ = ajas. From the above observation a;,a; commute, so that a? =
b3 = 1. Since h is even, b is an even permutation and so lies in SL,(R).
The signature of the permutation a; is (—1)*~*", and so by making an
appropriate choice of sign in the definition of a; we can ensure that a €
SLn(R). It is not hard to show that, subject to this choice, a,b are in fact
in E,(R).

Now the points of Q moved by ab are just the images under b of the points
moved by az. Thus a} fixes all points except 5th elements in rows, and so
from the observation above [a,a] = 1. Similarly ¢} fixes all 4th elements in

rows, and so [az,a] = 1. Therefore we have
[a,0°] = [a,a}] = [a1,4}], = ¢, say,

and c is a permutation matrix. The only non-trivial orbits of ¢ arise where

the supports of a;,a® overlap. It is easy to check that these orbits are
pp 1 P

{yl)v%)vé}
and
{"g:yj} and {vf,;,vj__ll for2<j<r

m

Therefore ¢ = (y;,v3,v3)*?.
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For A C Q, write Alt (A) for the subgroup of SL,(R) acting as even per-
mutations on A and as the identity on Q\A. Choose A C  maximal with

respect to containing {y1,v},v3} and satisfying

Alt (A) < {a, b).

Claim 1. If R;NA # { then R; C A.

Since (Alt (A))® = Alt (Ab) and ANAb # @, the group (Alt (A), (Alt (A))P)
1s primitive on AUAD, and since it also contains a 3-cycle it must be Alt (AU
Ab). The maximality of A now implies that Ab = A, and since (b) is

transitive on R; the claim follows.

Claim 2. f i < h— 1 and R; C A then Riyy NA # 0.

Write A; = A\ {v} | j < h}. Then a; commutes with Alt (A;), so that
Alt (AU Ajay) = (Alt (A), (Alt (A1))*) = (Alt (A), (Alt (A1))%) < {a,b).

The maximality of A implies that Aja; C A, and we have 'vi"'l =via; € A.

Claims 1 and 2 show that A contains all rows, and a similar argument shows
that A = Q. In other words, (a, b) contains all even permutations. It follows
that {a,b) contains either a2 if a; is an even permutation, or the product of
ay and an arbitrary transposition if a; is odd. It is now a routine matter
to show, by taking commutators and conjugates repeatedly, starting with
[az, a3] for suitable even permutations u if a; is even, and using variants of

the commutator identity
[]. + /\e,-_,-,l + /,ze_,-k] =1+ )\Iieik
for distinct ¢, j, k, to show that E,(R) < (e, b).
The proof of Theorem 2 is based on the use of a diagram like Figure 1,

but it is substantially harder, because it is impossible to arrange that the

permutations which arise have nearly disjoint supports.
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We now state some more results which can be proved using similar methods.

Definition. Let C be a class of groups. A group G is residually C if for all
g € G\1 there exist a group H € C and an epimorphism 8 : G — H with

g9 # 1.

Theorem 4. Let R be a finitely generated Euclidean ring and let ¢ =
{PSL,(R)| n >3} andm > 7. Then the free product C * Cy, is residually
C.

In the group (a) * (b), where a® = b™ = 1, each non-trivial word is conjugate
to a, b* or to a product

bitabiza ... ba

with 1 < i < m — 1 for each j. To obtain an epimorphism to a group
PSL,(R) in which the image of the above word is non-trivial we modify the
action of b on the rows in Figure 1 so that 4% takes the first point of R;
to the last point of R;. Thus the image of this word in E,(R) takes v} to
»{*! and so is non-trivial. Unfortunately we cannot now ensure easily that
the image of the map to E,(R) contains a 3-cycle, and so it is somewhat
harder than in Theorem 3 to prove that this image is En(R). The proof of

the corresponding result for m = 3 is harder still:

Theorem 5. (Tamburini-Wilson-Gavioli, [28]) Let R be a finitely gener-
ated Euclidean ring and let C = { PSL,(R) | n > 3}. Then the free product
C * C3 is residually C.

Like Theorem 2, Theorem 5 takes a striking form when R = Z since it shows
that PSLy(Z) is residually { PSL,(Z) | n > 3}. By contrast, if r > 3 then
PSL,(Z) certainly cannot be residually { PSL,(Z) | n > r + 1} because it

has the congruence subgroup property.

We end this section by stating the most general result on generation of

groups which has been proved using these methods.
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Theorem 6. (Tamburini-Wilson, [26]) Let A, B be finite non-trivial groups
such that |A||B| > 12. Then for all n > 4|A||B| + 12 and all ¢, SL,(g) can
be generated by a copy of A and a copy of B.

The strategy is essentially the same, except that now we need to group the
rows which are the regular B-orbits into rectangles. Writing |A] =1+ 1 and
|B| = m, we consider a diagram as shown below. The non-trivial orbits of A
are the bottom I+ 1 points of each column having length at least I+ 1. There
are many unpleasant technical difficulties of a rather elementary nature to
be overcome when the orders of A, B are small and all vestiges of elegance

disappear in the treatment of these cases.

n
1 1 1
Uiy e Ulp -er Uim
1 1 1
vll .o vlr LR vlm
2 2 2
Vi ... Yy .- Uim
2 2 2
vll PR 'Ulr - 'Ulm
3 3 3
[y2) n Vip -+ Uim
3 3
vll Uiy Uim
4
[ys] U1t

Figure 2
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3. PSLy(q) revisited

The techniques described in Section 2 give no information about groups of
low rank. However, for the lowest dimensions, direct matrix calculations are
possible. It was shown by Macbeath [13] that PSL,(g) is (2, 3)-generated
for all ¢ # 9, by Garbe [10] that SL3(q) is (2, 3)-generated for all ¢ # 4 and
by Tamburini and Vassallo (23], [24] that SL4(q) is (2,3)-generated for all
g # 2. (Clearly SL(g) cannot be (2, 3)-generated for ¢ odd, since the only
involution is in the centre.) The matrix computations become progressively
harder as the ranks of these groups increase, and the techniques of Section
2 only become available when the rank is quite large. However, the gap
between the results for groups of low rank and groups of high rank has been
narrowed in [24], where it is proved that SL,(g) is (2, 3)-generated if n > 13
and either ¢ is even or n # 13,14,17; and the gap has been closed almost

entirely in odd characteristic:

Theorem 6. (Di Martino-Vavilov, [6], [7]) Let ¢ be odd and ¢ # 9. Then
SL,(q) is (2, 3)-generated for n > 5.

Theorem 6 also gives another approach to the proof that the groups SLy,(q)
with n large are (2,3)-generated. Like Theorem 2, it is constructive and
allows one to write down explicit matrices generating SL,(g); in fact the
generators given by the two results are very similar. The major difference is
in the proof, which is linear rather than permutational in character. It relies
on McLauchlin’s classification [17] of finite irreducible linear groups gener-
ated by root subgroups and the theorem of Dickson mentioned in Section
1. It seems very probable that the ideas developed in the proof of Theo-
rem 6 will also yield a proof that the exceptional Chevalley groups of types
Eg, E7, Es in odd characteristic are (2, 3)-generated. The treatment of the
groups SL,(¢) with n < 11 in Theorem 6 involves a considerable amount of
case by case analysis and the general arguments fail for the groups SL,(q)
with n = 8,10 and ¢ = 3,5, 7; that the proposed generators for these groups
are indeed generators was checked with computer calculations using GAP
3.2.
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We now return to classical groups of large rank. The information given by
Theorem 2 about finite classical groups is much stronger than mere (2, 3)-
generation of these groups. We shall show that Theorem 2 implies that large
direct powers of the groups SL,(gq) are (2, 3)-generated.

We recall that if 8 : R — S is a homomorphism, then there is an induced ho-
momorphism GL, (R) — GL,(S) defined by (ai;) — (ai;0). If 6 is surjective,
so is the induced map E,(R) — E,(S). We note also that if R~ R, & Ry
then E,(R) 2 En(R1) x En(Rz).

Let K be a finite field and consider the polynomial ring R=K{zy, z2,...,z.].
So R can be generated by d = e + 1 elements, of which one is a unit of finite
order. Let I be the intersection of the kernels of all homomorphisms from R
to K extending the identity map on K and let R = R/I. So R = K/ where

f = |K|¢, by the Chinese remainder theorem. Thus we have an epimorphism
En(R) — En(R) 2 (Ea(K))’ = (SLa(K))'.

We conclude from Theorem 2 that (SL,(K))! is (2,3)-generated if n >
12d + 16 = 12e + 28. This gives the following

Corollary. (SL,(q))" is (2,3)-generated, where r = gl(*=2/12, Simjlarly
for some other classical groups; e.g. for ¢ odd, (Sp,,(q))® is (2, 3)-generated,
where s = ¢l(n=3D/12],

It is worth emphasising that the proof of the Corollary does not depend on

the class-ification of the finite simple groups.

Write g(n) for the largest integer m such that (SL,(¢))?" is (2, 3)-generated

for all g. From the Corollary and elementary considerations we have
[_(_r%z] < g(n) < n? for all n,

and it is not hard to improve each of these bounds for g(n) slightly. It

would be interesting to know more about the asymptotic behaviour of g(n)

as n — o0.
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